Механические свойства биологических тканей

Под механическими свойствами биологических тканей пони­мают две их разновидности. Одна связана с процессами биологи­ческой подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечи­ваются АТФ, их природа рассматривается в курсе биохимии. Ус­ловно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность — пас­сивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям.

Как технический объект биологическая ткань — композици­онной материал, он образован объемным сочетанием химически разнородных компонентов. Механические свойства биологиче­ской ткани отличаются от механических свойств каждого компо­нента, взятого в отдельности. Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов.

Костная ткань. Кость — основной материал опорно-двига­тельного аппарата. В упрощенном виде можно считать, что 2/3 мас­сы компактной костной ткани (0,5 объема) составляет неорганиче­ский материал, минеральное вещество кости — гидроксилапатит ЗСа3(РО4)2 • Са(ОН)2. Это вещество представлено в форме микро­скопических кристалликов. В остальном кость состоит из органи­ческого материала, главным образом коллагена (высокомолеку­лярное соединение, волокнистый белок, обладающий высокоэластичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).

Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуаль­ных условий роста организма и, конечно, от участка организма.

Композиционное строение кости придает ей нужные механиче­ские свойства: твердость, упругость и прочность. Зависимость σ = = f(ε) для компактной костной ткани имеет характерный вид, по­казанный на рис. 8.18, т. е. подобна аналогичной зависимости для твердого тела (см. рис. 8.13); при небольших деформациях выполняется закон Гука. Модуль Юнга около 10 ГПа, предел про­чности 100 МПа. Полезно эти данные сопоставить с данными для капрона, армированного стеклом (см. табл. 16, заметно хорошее соответствие).

Примерный вид кривых ползучести компактной костной тка­ни приведен на рис. 8.19. Участок 0А соответствует быстрой де-

Механические свойства биологических тканей - student2.ru

формации, АВ — ползучести. В момент t1 соответствующий точ­ке В, нагрузка была снята. ВС соответствует быстрой деформации сокращения, CD — обратной ползучести. В результате даже за - длительный период образец кости не восстанавливает своих прежних размеров, сохраняется некоторая остаточная деформация εост.

Этой зависимости приближенно соответствует модель (рис. 8.20, а), сочетающая последовательное соединение пружины с моделью Кельвина—Фойхта. Временная зависимость относительной деформации показана на рис. 8.20, б. При действии постоян- ной нагрузки мгновенно растягивается пружина 1 (участок ОА), затем вытягивается поршень (ползучесть АВ), после прекращения нагрузки происходит быстрое сжатие пружины 1 (ВС), а пружинa 2 втягивает поршень в прежнее положение (ползучесть CD). В предложенной модели не предусматривается остаточная деформация.

Схематично можно заключить, что минеральное содержимое и кости обеспечивает быструю деформацию, а полимерная часть (коллаген) определяет ползучесть.

Механические свойства биологических тканей - student2.ru Если в кости или в ее механической модели быстро создать постоянную деформацию, то скачкообразно возникает и напряжение (участок ОА на рис. 8.20, в). На модели это означает растяжение пру­жины 1 и возникновение в ней напря­жения. Затем (участок АВ) эта пру­жина будет сокращаться, вытягивая поршень и растягивая пружину 2, на пряжение в системе будет убывать r (релаксация напражения). Однако даже спустя значительное время сохра­нится остаточное напряжение σост. Для модели это означает, что не возникнет при постоянной деформации такой ситуации, чтобы пружины вернулись в недеформированное состоя ние.

Кожа. Она состоит из волокон кол­лагена, эластина (так же как и колла­ген, волокнистый белок) и основной ткани — матрицы. Коллаген состав­ляет около 75% сухой массы, а эластин — около 4%. Примерные данные по механическим свойствам приведены в табл. 17.

Эластин растягивается очень сильно (до 200—300%), пример­но как резина. Коллаген может растягиваться до 10%, что соот­ветствует капроновому волокну.

Таблица 17

Материал Модуль упругости, МПа Предел прочности, МПа
Коллаген Эластин 10—100 0,1—0,6

Из сказанного ясно, что кожа является вязкоупругим материа­лом с высокоэластическими свойствами, она хорошо растягивает­ся и удлиняется.

Мышцы. В состав мышц входит соединительная ткань, со­стоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.

Релаксация напряжения в гладких мышцах соответствует модели Максвелла (см. рис. 8.15, в; 8.16, б). Поэтому гладкие мышцы могут значительно растягиваться без особого напряжения, что способствует увеличению объема полых органов, например мочевого пузыря.

Механическое поведение скелетной мышцы соответствует мо­дели, представленной на рис. 8.20, а. При быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается до σост (см. рис. 8.20, в).

Зависимость σ = f(ε) для скелетной мышцы нелинейна (рис. 8.21). Анализ этой кривой показывает, что примерно до ε ≈ 0,25 в порт­няжной мышце лягушки механизм деформации обусловлен рас­прямлением молекул коллагена (см. § 8.3). При большей деформа­ции происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механиче­ские свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Со­держание этих составляющих сосудистой ткани изменяется по хо­ду кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2:1, а в бедренной артерии 1:2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.

При детальном исследовании механических свойств сосудис­той ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно, однако, рассматривать де­формацию сосуда в целом как результат действия давления из­нутри на упругий цилиндр.

Механические свойства биологических тканей - student2.ru

Рассмотрим цилиндрическую часть кровеносного сосуда дли­ной l, толщиной h и радиусом внутренней части r. Сечения вдоль и поперек оси цилиндра показаны на рис. 8.22, а, б. Две половины цилиндрического сосуда взаимодействуют между собой по сечени­ям стенок цилиндра (заштрихованные области на рис. 8.22, а). Общая площадь этого «сечения взаимодействия» равна 2hl. Если в сосудистой стенке существует механическое напряжение а, то си­ла взаимодействия двух половинок сосуда равна

Механические свойства биологических тканей - student2.ru

 
  Механические свойства биологических тканей - student2.ru

Эта сила уравновешивается силами давления на цилиндр изнутри (они показаны стрелками на рис. 8.22, б). Силы направлены под разными углами к горизонтальной плоскости (на рисунке). Для того чтобы найти их равнодействующую, следует просуммировать горизонтальные проекции. Однако проще найти равнодействую­щую силу, если умножить давление на проекцию площади полу­цилиндра на вертикальную плоскость ОО'. Эта проекция равна 2rl. Тогда выражение для силы через давление имеет вид

 
  Механические свойства биологических тканей - student2.ru

Приравнивая (8.10) и (8.11), получаем σ • 2hl = р • 2rl, откуда

 
  Механические свойства биологических тканей - student2.ru

Это уравнение Ламе.

Будем считать, что при растяжении сосуда объем его стенки не изменяется (площадь стенки возрастает, а толщина убывает), т. е. не изменяется площадь сечения стенки сосуда (рис. 8.22, б):

С учетом (8.13) преобразуем (8.12):

Механические свойства биологических тканей - student2.ru

Из (8.14) видно, что в капиллярах (r→ 0) напряжение отсутст­вует (σ → 0).

В заключение отметим разделы и направления медицины, для которых особо важно иметь представление о пассивных механиче­ских свойствах биологических тканей:

— — — в космической медицине, так как человек находится в но­вых, экстремальных, условиях обитания;

— — — в спортивной медицине результативность достижений и ее возрастание побуждают портивных медиков обращать внимание на изические возможности опорно-двигательного аппарата человека; механические свойства тканей необходимо учитывать гиги­енистам при защите человека от действия вибраций; в протезировании при замене естественных органов и тка­ней искусственными также важно знать механические свойства и параметры биологических объектов;

— — — в судебной медицине следует знать устойчивость биологических структур по отношению к различным деформациям;

— — — в травматологии и ортопедии вопросы механического воз­ действия на организм являются определяющими.

Этот перечень не исчерпывает значения материала, изложен­ного в настоящей главе, для врачебного образования.

ГЛАВА 9 Физические вопросы гемодинамики

Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физи­ческой основой гемодинамики является гидродинамика. Те­чение крови зависит как от свойств крови, так и от свойств кровеносных сосудов.

В главе рассматриваются также физические основы работы некоторых технических устройств, используемых в связи с кровообращением.

Модели кровообращения

 
  Механические свойства биологических тканей - student2.ru

Механические свойства биологических тканей - student2.ru Рассмотрим гидродинамическую модель кровеносной системы, предложенную О. Франком. Несмотря на достаточную простоту, она позволяет установить связь между ударным объемом крови артерии) поступает кровь из сердца, объ­емная скорость кровотока равна Q. От упругого резервуара кровь оттекает с объемной скоростью кровотока Qo в п(объем крови, выбрасываемый желу­дочком сердца за одну систолу), гид­равлическим сопротивлением перифе­рической части системы кровообраще­ния Хо и изменением давления в артериях. Артериальная часть систе­мы кровообращения моделируется упругим (эластичным) резервуаром (рис. 9.1, обозначено УР). Так как кровь находится в упругом резервуаре, то ее объем V в любой момент времени зависит от давления ρ по следующему соотношению:

где κ— эластичность, упругость резервуара (коэффициент про­порциональности между давлением и объемом), V0 — объем ре­зервуара при отсутствии давления (ρ = 0). Продифференцировав (9.1), получим

Механические свойства биологических тканей - student2.ru

В упругий резервуар (артерии) поступает кровь из сердца, объемна скорость кровотока равна Q. Предполагаем, что гидравлическое сопротивление периферической системы постоянно. Это мо­делируется «жесткой» трубкой на выходе упругого резервуара (рис. 9.1).

Можно составить достаточно очевидное уравнение (рис. 9.1)

Механические свойства биологических тканей - student2.ru

показывающее, что объемная скорость кровотока из сердца равна сумме скорости возрастания объема упругого резервуара и скорос­ти оттока крови из упругого резервуара.

На основании уравнения Пуазейля (7.8) и формулы (7.9) мож­но записать для периферической части системы

Механические свойства биологических тканей - student2.ru

где р — давление в упругом резервуаре, рв — венозное давление, оно может быть принято равным нулю, тогда вместо (9.4) имеем

Q0=ρ/X0 (9.5)

 
  Механические свойства биологических тканей - student2.ru

Подставляя (9.2) и (9.5) в (9.3), получаем

 
  Механические свойства биологических тканей - student2.ru

Проинтегрируем (9.6). Пределы интегрирования по времени соот­ветствуют периоду пульса (периоду сокращения сердца) от 0 до Тп. Этим временным пределам соответствуют одинаковые давления — минимальное диастолическое давление рд :

 
  Механические свойства биологических тканей - student2.ru

Интеграл с равными пределами равен нулю, поэтому из (9.7) имеем

Экспериментальная кривая, показывающая временную зависи­мость давления в сонной артерии, приведена на рис. 9.2 (сплошная линия). На рисунке показан период пульса, длительности Тс сис­толы и Тд диастолы, рс — максимальное (систолическое) давление.

Интеграл в левой части уравнения (9.8) равен объему крови, который выталкивается из сердца за одно сокращение, — удар­ный объем. Он может быть найден экспериментально. Интеграл в правой части уравнения (9.8) соответствует площади фигуры, ог­раниченной кривой и осью времени (см. рис. 9.2), что также мож­но найти. Используя указанные значения интегралов, можно вы­числить по (9.8) гидравлическое сопротивление периферической части системы кровообращения.

Во время систолы (сокращение серд­ца) происходит расширение упругого резервуара, после систолы, во время ди­астолы — отток крови к периферии, Q = 0. Для этого периода из (9.6) имеем

Механические свойства биологических тканей - student2.ru

 
  Механические свойства биологических тканей - student2.ru

Соответствующая кривая изображена тонкой линией на рис. 9.2. На основании (9.5) получаем зависимость объемной скорости оттока крови от времени:

Механические свойства биологических тканей - student2.ru

где Qc= Pс/X0 объемная скорость кровотока из упругого резервуара в конце систолы (начале диастолы).

Зависимости (9.10) и (9.11) представляют собой экспоненты. Хотя данная модель весьма грубо описывает реальное явление, она чрезвычайно проста и верно отражает процесс к концу диасто­лы. Вместе с тем изменения давления в начале диастолы с по­мощью этой модели не описываются.

На основе механической модели по аналогии может быть по­строена электрическая модель (рис. 9.3).

Здесь источник U, дающий несинусоидальное переменное элект­рическое напряжение, служит аналогом сердца, выпрямитель В — сердечного клапана. Конденсатор С в течение полупериода накап­ливает заряд, а затем разряжается на резистор R, таким образом происходит сглаживание силы тока, протекающего через резистор. Действие конденсатора аналогично действию упругого резервуара (аорты, артерии), который сглаживает колебание давления крови в артериолах и капиллярах. Резистор является электрическим аналогом периферической сосудистой системы.




 
  Механические свойства биологических тканей - student2.ru

В более точной модели сосудистого русла использовалось боль­шее количество эластичных резервуаров для учета того факта, что сосудистое русло является системой, распределенной в простран­стве. Для учета инерционных свойств крови при построении моде­ли предполагалось, что эластичные резервуары, моделирующие восходящую и нисходящую ветви аорты, обладают различной уп­ругостью. На рис. 9.4 приведено изображение модели Ростона, со­стоящей из двух резервуаров с различными эластичностями (упругостями) и с неупругими звеньями разного гидравлического со-

Механические свойства биологических тканей - student2.ru противления между резервуарами. Этой модели соответствует электрическая схема, изображенная на рис. 9.5. Здесь источник тока задает пульси­рующее напряжение U(t), являющее­ся аналогом давления p(t); емкости С1 и С2 соответствуют упругостям резер­вуаров kl и k2, электрические сопро­тивления R1, R2 и R3 — гидравличе­ским сопротивлениям X1, Х2 и Х3, си-

лы тока 11 и 12 — объемным скоростям оттока крови Q1 и Q2.

Такая модель математически описывается системой двух диф­ференциальных уравнений первого порядка, их решение дает две кривые, соответствующие первой и второй камерам.

Двухкамерная модель лучше описывает процессы, происходя­щие в сосудистом русле, но и она не объясняет колебания давле­ния в начале диастолы.

Модели, содержащие несколько сотен элементов, называют мо­делями с распределенными параметрами.

Пульсовая волна

При сокращении сердечной мышцы (систола) кровь выбрасыва­ется из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к перифе­рии. Упругость стенок сосудов приводит к тому, что во время сис­толы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т. е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давле­ние человека в норме равно приблизительно 16 кПа. Во время рас­слабления сердца (диастола) растянутые кровеносные сосуды спа­дают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11 кПа.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в пе­риод систолы, называют пульсовой волной.

Пульсовая волна распространяется со скоростью 5—10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она

Механические свойства биологических тканей - student2.ru должна распространиться на расстоя­ние 1,5—3 м, что больше расстояния от сердца к конечностям. Это означает, что начало пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Профиль части арте­рии схематически показан на рис. 9.6: а — после прохождения пульсовой вол­ны, б — в артерии начало пульсовой волны, в — в артерии пульсовая волна, г — начинается спад повышенного дав­ления.

Д1ульсовой волне будет соответство­вать пульсирование скорости кровото­ка в крупных артериях, однако ско­рость крови (максимальное значение

0,3—0,5 м/с) существенно меньше скорости распространения пульсовой волны.

Из модельного опыта и из общих представлений о работе серд­ца ясно, что пульсовая волна не является синусоидальной (гармо­нической). Как всякий периодический процесс, пульсовая волна может быть представлена суммой гармонических волн (см. § 5.4). Поэтому уделим внимание, как некоторой модели, гармониче­ской пульсовой волне.

Предположим, что гармоническая волна [см. (5.48)] распрост­раняется по сосуду вдоль оси X со скоростью v. Вязкость крови и упруговязкие свойства стенок сосуда уменьшают амплитуду вол­ны. Можно считать (см., например, § 5.1), что затухание волны будет экспоненциальным. На основании этого можно записать следующее уравнение для пульсовой волны:

Механические свойства биологических тканей - student2.ru

где р0 — амплитуда давления в пульсовой волне; х — расстояние до произвольной точки от источника колебаний (сердца); t — вре­мя; ω — круговая частота колебаний; χ — некоторая константа, определяющая затухание волны. Длину пульсовой волны можно найти из формулы

Механические свойства биологических тканей - student2.ru

Волна давления представляет некоторое «избыточное» давле­ние. Поэтому с учетом «основного» давления ра (атмосферное давление или давление в среде, окружающей сосуд) можно измене­ние Явления записать следующим образом:

Механические свойства биологических тканей - student2.ru

Как видно из (9.14), по мере продвижения крови (по мере уве­личения х) колебания давления сглаживаются. Схематично на рис. 9.7 показано колебание давления в аорте вблизи сердца (а) и в артериолах (б). Графики даны в предположении модели гармо­нической пульсовой волны.

На рис. 9.8 приведены экспериментальные графики, показы­вающие изменение среднего значения давления и скорости vкр кровотока в зависимости от типа кровеносных сосудов. Гидроста­тическое давление крови не учитывается. Давление — избыточ­ное над атмосферным. Заштрихованная область соответствует ко­лебанию давления (пульсовая волна).

Скорость пульсовой волны в крупных сосудах следующим об­разом зависит от их параметров (формула Моенса—Кортевега):

Механические свойства биологических тканей - student2.ru

где Е — модуль упругости, р — плотность вещества сосуда, h — толщина стенки сосуда, d — диаметр сосуда.

 
  Механические свойства биологических тканей - student2.ru

 
  Механические свойства биологических тканей - student2.ru

Интересно сопоставить (9.15) с выражением для скорости рас­пространения звука в тонком стержне

У человека с возрастом модуль упругости сосудов возрастает, поэтому, как следует из (9.15), становится больше и скорость пульсовой волны.

Наши рекомендации