Основные параметры аппаратов

К основным номинальным параметрам выключателей в соответствии с рекомендациями Международной электротехнической комиссии (МЭК) относятся:

    • номинальное напряжение Uном;
    • наибольшее рабочее напряжение Uн.р;
    • номинальный уровень изоляции в киловольтах;
    • номинальная частота ном;
    • номинальный ток Iном;
    • номинальный ток отключения Iо.ном;
    • номинальный ток включения Iв.ном;
    • номинальное переходное восстанавливающееся напряжение (ПВН) при КЗ на выводах выключателя;
    • номинальные параметры при неудаленных КЗ;
    • номинальная длительность КЗ;
    • номинальная последовательность операций (номинальные циклы);
    • нормированные показатели надежности и др.

К параметрам, характерным для воздушных выключателей, следует отнести номинальное давление и расход воздуха, необходимые для проведения операций включения и отключения, нижний предел давления для производства отдельных операций.

Параметры коммутационных аппаратов с бестоковой коммутацией.

Разъединители Uном, Uн.р., Iн, iд.с, iт.с

Для отделителя добавляется t отк, t вкл, характеризующие привод.

Реактор Uном, Uн.р., Iн, I д.с, I т.с+ индуктивность.

Измерительные аппараты

ТТ —Uном, Iн, iд.с, iт.с

ТН— Uном, Uн.р.

Рассмотрим некоторые наиболее важные параметры.

Важнейшим параметром А является номинальное напряжение.

1. Uном — [кВ действ] ГОСТ 1516.3-93

— номинальное линейное напряжение трехфазной системы, в которой аппарат должен работать.

Номинальное напряжение Uном (линейное) — это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения (номинальное напряжение по МЭК), установленные для продолжительной работы. Номинальные напряжения выключателей соответствуют классам напряжения (табл. 1).

Наибольшее рабочее напряжение

2. Uн раб=(1,2-1,05) Uном

Для компенсации падения напряжения в сети и в обмотках источников энергии напряжение на зажимах источников поддерживается несколько выше номинального. В свя­зи с этим вводится наибольшее рабочее напряжение Uн,раб, при котором аппарат может работать сколь угодно дли­тельно. Это напряжение на 5 — 20 % выше номинального.

Таблица 1 Класс номинальных напряжений Номинальное междуфазное (линейное) напряжение, действующее значение, кВ Наибольшее рабочее напряжение (номинальное напряжение по МЭК), действующее значение, кВ

Uном
Uн раб 3,6 7,2 12,0 17,5 24,0 40,5

Номинальное напряжение определяет электрическую изоляцию аппарата. Номинальный уровень изоляции выключателя характеризуется значениями испытательных напряжений, воздействующих на основную изоляцию выключателя.

В связи с тем, что при работе электроустановок возникают коммутационные и атмосферные перенапряжения, изоляция аппарата подвергается большим нагрузкам. Ее прочность регламентируется испытательным напряжением промышленной частоты и импульсным испытательным на­пряжением (ГОСТ 1516.3-96). Эти напряжения не должны приводить к пробою внутренней и внешней изоляции АВН.

3. Iном—[А] действующий ток номинальный

Для АВН, которые в процессе эксплуатации обтекаются током нагрузки, важным параметром является номинальный ток. Согласно ГОСТ Р 52565-2006 устанавливаются следую­щие номинальные токи: 200, 400, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000, 10000, 12500, 16000, 20000, 25000, 31 500 А.

Iном—действующее значение длительно протекающего тока, который вызывает нагрев элементов ТВС, не превышающий допустимый по ГОСТ.

Требования по нагреву АВН изложены в ГОСТ 8024-90.

В ТТ номинальные первичные токи от1 до 40000 А, номинальные вторичные токи 1 и 5 Ампер.

В предохранителях ВН ток от 2 до 1000 А. Номинальные токи более 200 А относятся к токоограничивающим предохранителям.

4. I о,ном — номинальный ток отключения

Коммутационная отключающая способность выключателя характеризуется номинальным током отключения Iо.ном, который может отключить выключатель при наибольшем рабочем напряжении и нормированных условиях восстановления напряжения. Ток отключения характеризуется действующим значением его периодической составляющей Iо.п, отнесенной к моменту возникновения дуги (момент размыкания дугогасительных контактов) и называемой номинальным током отключения Iо.ном (2,5; 3,2; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 35,5; 40; 45; 50; 56; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250 кА), а также нормированным процентным содержанием bн апериодической составляющей, равным отношению апериодической составляющей ia тока отключения к амплитуде периодической составляющей (Iо.п = Iо.ном) того же тока в момент размыкания дугогасительных контактов. Ток отключения выключателя определяется суммой периодической и апериодической составляющих

Номинальный ток отключения— это действующее значение периодической составляющей тока КЗ в момент расхождения контактов выключателя (МРК), который должен отключаться аппаратом при следующих условиях:

1) при нормированном содержании апериодической составляющей;

2) при циклах операций, предусмотренных ГОСТ 687-78;

3) при напряжении сети U=Uн, раб,

4) при условиях восстановления напряжения согласно ГОСТ 687-78.

I—это наибольший ток КЗ, который выключатель способен отключить в заданных условиях в цепи с возвращающимся напряжением промышленной частоты, соответствующим наибольшему рабочему напряжению выключателя и с заданным переходным восстанавливающимся напряжением, равным номинальному.

При КЗ в цепи переменного тока происходит сложный переходный процесс, в результате которого проходящий по ней ток за время около 0,01 с от мгновенного значения тока нагрузки до значения Iр , определяемого мощностью цепи и называемого ударным током КЗ. Затем ток постепенно уменьшается до значения Ö2 I¥. Ток КЗ в любой момент может быть разложен на 2 составляющие – периодическую и апериодическую.

Кривая тока КЗ, полученная на осциллографе, изображена на рис. 2.1.Ток отключения определяется в МРК.

Периодическая составляющая тока отключения

I0,п = AA'´mi/2Ö2, или I0,п = Ö2 I¥.

Периодическая составляющая изменяется с частотой 50 Гц с постепенно затухающей амплитудой, а затем переходит в установившийся ток КЗ. Это обусловлено изменением магнитного поля генераторов, происходящих при КЗ. Продолжительность затухания периодической составляющей, а следовательно и переходного процесса составляет несколько секунд.

Апериодическая составляющая

I0,а. = 0В'´mi , (или I0,а.- расчетная величина апериод. составляющей)

где АА' — расстояние между огибающими, а 0В' — ордината кривой, проведенной как средняя между кривыми АС и А'С' (,mi — масштаб по току, А/мм).

Апериодическая составляющая быстро затухает и это уменьшение происходит тем быстрее, чем больше активное и чем меньше индуктивное сопротивление цепи.

Допустимое значение апериодической составляющей в токе, % характеризуется коэффициентом bном = Iо,а-100%/(I о,номÖ2), который определяется по кривой рис. 2.2 для времени, равного собственному времени отключения выключателя с добавлением 0,01 с (время защиты).

tкз,мс
b,% 81,4 71,4 65,4 57,1 51,4 31,4 25,7 16,5 14,3

Или, если необходимо посчитать фактически отключаемый ток,

Iф= I о,номÖ2+Iапер,

или через b i = I о,номÖ2*(1+b/100).

Наряду с Iо.ном для оценки коммутационной способности также широко применяется мощность отключения выключателя. Эта мощность равна Ро=Ö3Iо,ном Uн,раб. Когда дуга горит, то, как правило, мощность, выделяемая в дуге, Ö 3Iо,ном Uн,раб << Ро. Когда дуга погаснет и идет процесс восстановления напряжения, к выключателю прикладывается высокое напряжение, а ток равен практически нулю, т. е. мощность Ро никогда в выключателе не выделяется. По существу Ро — полная мощность, в основном реактивная, которая создается источником тока КЗ. Чем больше эта мощность, тем больше ток Iо,ном ,тем больше коммутационная способность выключателя.

Ток Iо,ном должен отключаться выключателем многократно: при больших токах — до 6 раз, при малых — до 16. Кратность зависит от вида выключателя и номинального тока отключения, понижаясь с возрастанием последнего.

Основные параметры аппаратов - student2.ru Основные параметры аппаратов - student2.ru Основные параметры аппаратов - student2.ru

Основные параметры аппаратов - student2.ru

Рис. 2.1. Кривая изменения Рис. 2.2. Кривая для определения тока КЗ при

нормированной апериодической составляющей Рвом

При КЗ АВН обтекаются током КЗ, который в 10 — 20 раз больше номинального. При этом токоведущая часть аппарата подвергается большим тепловым и механическим нагрузкам. Для характеристики АВН при больших токах вводятся понятия — термическая и электродинамическая стойкости.

Т.к. i = I о,номÖ2*(1+b/100), то считая b=0,8 можно определить iуд=1,8Ö2 I о,ном=2,55 I о,ном, или ток динамической стойкости.

5.Номинальный ток включения

Номинальный ток включения Iв.ном — наибольший ток, который выключатель может включить при наибольшем рабочем напряжении. При возникновении КЗ в цепи за время около 10 мс ток достигает своего максимального значения, называемого ударным током КЗ. Поэтому номинальный ток включения должен быть не менее ударного тока КЗ из условия возможности включения на существующее КЗ в цепи [в режиме автоматического повторного включения (АПВ)].

6.Электродинамическая стойкость

Номинальная длительность тока КЗ характеризуется способностью выключателя выдерживать во включенном положении без повреждений ток электродинамической стойкости (ударный ток) iуд = 2,55 Iо.ном и ток термической стойкости Iт = Iо.ном. Время протекания тока Iт составляет 1 или 2 с для выключателей при Uном > 330 кВ и 1 или 3 с для выключателей при Uном > 220 кВ.

Определяется ударным током, который аппарат может выдержать без поврежде­ний, препятствующих его нормальной работе. Электроди­намическая стойкость может выражаться либо амплитудой ударного тока, кА, либо кратностью этого тока относительно номинального значения. Расчет ЭДУ ведется по этому значению тока.

Термическая стойкость выражается либо током It в килоамперах, либо кратностью. Т.С.—наибольшее действующее значение тока КЗ за время tкз, которое аппарат выдерживает без нагрева токоведущих частей до температур, превышающих допустимые при токе КЗ и без повреждений, препятствующих его дальнейшей исправной работе. Эта стойкость от­носится к определенному времени t (1 — 5 с) в зависимости от класса аппарата.

Время кз составляет:

Разъединители 35кв-4с, 110-220кв-3с, 330-1с

Заземлители—1с

Выключатели —до220кв –1 или 3с, 330 и более -1или 2с

В выключателях должно быть соблюдено соотношение It>= I о,ном

В аппаратах на одни и те же параметры токи динамической и термической стойкости д.б. одинаковы.

Во всем многообразии ЭАВН его основные параметры взаимно связаны и координированы, т.к. нерационально создавать А на малые номинальные токи и большие токи отключения.

В аппаратах, имеющих разъемные контакты, вводится понятие стойкости при сквозных токах КЗ. Это токи электродинамической и термической стойкости, которые может выдержать без повреждений аппарат при номинальных нажатиях в разъемных контактах (полное включенное поло­жение аппарата).

7. Номинальное переходное восстанавливающееся напряжение (ПВН) при КЗ на выводах выключателя;

При отключении тока КЗ на выводах выключателя возникает переходный процесс, который при гашении дуги характеризуется переходным восстанавливающимся напряжением (ПВН), зависящим от собственных параметров отключаемой сети.

Отключающая способность дугогасительных устройств по-разному зависит от характера изменения ПВН. Воздушные и элегазовые выключатели очень чувствительны к скорости нарастания ПВН (du/dt), а масляные — к максимальному ПВН. Этим объясняется нормирование Iо.ном.

Отключающая способность выключателя может быть охарактеризована зависимостью допустимой скорости восстановления напряжения du/dt от тока отключения (кривая 1 на рис. 5.2). Точки пересечения кривой 1 и прямой 2, описывающей зависимость скорости нарастания ПВН на контактах выключателя при отключении неудаленного КЗ от тока отключения, определяют предельный ток Iт, который может быть отключен воздушным выключателем без теплового пробоя.

Основные параметры аппаратов - student2.ru

При успешном преодолении первого пика напряжения (тепловой пробой не произошел) возможен пробой на максимальном напряжении. Для каждого типа выключателя может быть определено предельно допустимое максимальное ПВН, зависящее от отключаемого тока — кривая 3. Кривая 4 показывает максимальное ПВН сети, которое не зависит от коммутации. Точка их пересечения указывает предельное значение тока отключения выключателя Iэ, вызывающее возможный электрический пробой.

Выключатель не должен отказывать как при максимальных значениях ПВН при КЗ на контактах выключателя, так и при воздействии ПВН с высокой начальной скоростью роста при удаленных КЗ. Зависимости 3, 4, характеризующие режим возможного электрического пробоя, определяют предельный ток Iэ, который больше, чем предельный ток при возможном тепловом пробое Iт. Область применения выключателя ограничена по току значением Iт, а по напряжению — кривой (кривая 3) возможного электрического пробоя.

8.Время действия выключателя

Полное время отключения выключателя t0 — время с момента подачи команды на электромагнит отключения до погасания дуги во всех трех полюсах. В выключателях на большие токи отключения (80—100 кА) применяется двухступенчатое отключение с применением шунтирующих резисторов. В этом случае различают полное время отключения большого тока и полное время отключения тока шунтирующих резисторов. Полное время равно сумме собственного времени отключения и времени гашения дуги.

В выключателях с UНом>=ЗЗО кВ, где особенно важна малая длительность КЗ, полное время отключения t0 <= 0,04 с. При Uном= 110-220 кВ to = 0,04-0,08 с. При Uном<20 кВ to=0,l-0,2 с.

Собственное время включения TВКЛ — время с момента подачи команды на электромагнит включения до момента замыкания цепи высокого напряжения во всех трех фазах. В выключателях с шунтирующим резистором различают время включения контактов в цепи резисторов и время включения основных контактов. Время включения обычно в 2 раза больше времени отключения.

А в зависимости от времени подразделяются по быстродействию (по собственному времени):

сверхбыстробействующий <0,06с

быстродействующий 0,06-0,08 с

ускоренный 0,08-0,12с

небыстродействующий >0,12с

9. Циклы операций

В большинстве случаев повреждение в сетях носит временный характер: причина, вызывающая КЗ, самоликвидируется в результате кратковременного отключения напряжения, не превышающего 0,3 с, необходимого для деионизации участка существования открытой дуги КЗ, и появляется возможность повторного включения напряжения системы. Отсюда вытекает определенная последовательность операций, выполняемых выключателем, связанных с отключением КЗ и последующим автоматическим повторным включением (АПВ) этого участка сети

Допустим, что вследствие атмосферных перенапряжений произошло перекрытие внешней изоляции. После импульса тока по пути перекрытия течет ток промышленной частоты. Если поврежденную цепь отключить и дать возможность восстановиться прочности перекрытой изоляции (под действием ветра, теплового движения воздуха), то при повторном включении электроустановки будут работать в нормальном режиме. Как показывает статистика, такие повреждения составляют до 80 % общего числа повреждений. Таким образом, повторное включение установки позволяет значительно повысить надежность энергоснабжения, что дает большой экономический эффект. Однако нельзя исключить случай, когда после отключения цепи повреждение остается. Поэтому выключатель должен обладать способностью повторного отключения тока КЗ.

Режим, при котором происходит отключение (0), включение (В) и повторное отключение (О), называется режимом автоматического повторного включения (АПВ). Для выключателя, предназначенного для работы при АПВ, предписываются следующие циклы работы при токе IОНом:

1) (О — tбт — В)О— 180с — ВО; ( )-цикл успешного АПВ, если произошло перекрытие воздушной изоляции, которая восстанавливается.

1а) О —tбт —ВО —20 с —ВО (для U<220 кВ);

2) О —180 с—ВО —180с —ВО,

где tбт— нормированная бестоковая пауза — время с мо­мента погасания дуги после первого отключения (О) до момента появления тока при последующем включении (В); 180с — пауза длительностью 180 с; 20 с — пауза длитель­ностью 20 с.

Пауза tбт зависит от выключателя и колеблется от 0,3 до 1,2 с. Для быстродействующего АПВ (БАПВ) tбт =0,3 с. Выключатели, не предназначенные для работы при АПВ, должны испытываться только при цикле 2.

180 с необходимо выключателю для восстановления пониженного давления в резервуаре, или на взвод пружины масляного В.

НАДЕЖНОСТЬ

Выключатель является наиболее сложным и наиболее ответственным АВН, и его надежность определяет надежность всей энергосистемы. Надежность регламентируется ГОСТ 13377-75. В соответствии с этим ГОСТ различают отказы и несущественные повреждения.

Отказ — это такая неисправность, которая не дает возможности выключателю выполнять свою основную функцию. Сюда относятся невыполнение команд включения (В) или отключения (О), перекрытие изоляции аппарата, повреждение токоведущей цепи, препятствующее прохождению тока, отказы в гашении дуги. При отказе выключатель должен быть выведен из эксплуатации.

Несущественные повреждения — это такие неисправности, при которых выключатель может оставаться в работе и которые можно устранить в последующем, когда представится возможность.

Отказы и несущественные повреждения, обусловленные неправильной эксплуатацией, при оценке надежности не учитываются.

Количественно надежность выключателя может выражаться вероятностью безотказной работы или интенсивностью отказов. Оценка надежности выключателей производится в основном путем статистической обработки результатов эксплуатации выключателей одного и того же вида.

Анализ большого статистического материала показал, что 70 % отказов выключателей наступает из-за поломок в механизме аппарата, 10 % — из-за повреждения изоляции, 20 % вызвано другими причинами [2.2]. Поэтому при разработке, изготовлении, испытаниях и эксплуатации большое внимание следует уделять работе механизма.

Согласно [2.1] производятся механические испытания на надежность. Выключатели по механической износостойкости должны выдерживать 2000 операций (В—tn—О, где tn— произвольная пауза) без тока при Uном<=35 кВ и I о,ном= 12,5- 80 кА. Выключатели с большим I о,ном, чем указано выше, или с напряжением Uном>=110 кВ должны выдерживать 1000 операций. При этом не должно возникать ни одной неполадки. Испытания на механический ресурс производятся при числе операций 2000—4000. После 1000 или 2000 циклов допускается строго ограниченное число отказов (ГОСТ 687-78).

В связи с повышением требований к надежности ряд зарубежных фирм повышает число допустимых операций до 5000—10000.

Согласно анализу отказов в течение 10 лет на 6000 однотипных воздушных выключателях установлено, что средняя интенсивность отказов современных выключателей не превышает 0,01, т.е. один из 100 выключателей может отказать в течение года эксплуатации 1 раз [2.2]. Перед разработчиками выключателей ставится задача дальнейшего снижения интенсивности отказов (в 5 раз).

Оценка надежности при разработке выключателей на новые параметры или вообще новой конструкции чрезвычайно затруднена. Если в новом выключателе используются элементы от существующих, то можно при оценке надежности использовать материалы по отказам этих элементов [2.2].

При создании новых аппаратов испытаниям на надежность подвергаются основные узлы и элементы. Малое количество испытуемых узлов компенсируется большим числом проводимых испытаний. Испытания на отказы механизма выключателя проводятся на готовом новом образце, причем число операций включения и отключения достигает 10000 и механические испытания чередуются с испытаниями выключателя на нагрев, с охлаждением выключателя до самых низких температур и другими воздействиями, приближающимися к реальным условиям эксплуатации.

2. Электрическая дуга и процессы в ней.

Вопросами изучения электрической дуги, процессами в ней и способами ее гашения вы занимались уже в курсах ЭТМ и ОТЭА.

Из этих курсов мы знаем, что электрическая дуга в межконтактном промежутке представляет собой высокоионизированный газ, который содержит множество свободных электронов и положительных ионов и поэтому обладает низким электрическим сопротивлением.

2.1. Ионизация и деионизация.

Основными видами ионизации дугового промежутка являются:

1. Объемная: ударная, термическая, фотоионизация.

2. Поверхностная: автоэлектронная, термоэлектронная, фотоэлектронная, вторичная ионная.

Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, автоэлектронная и термоэлектронная эмиссии, а из процессов, происходящих в дуговом стволе, термическая ионизация и ударная ионизация.

Автоэлектронная эмиссия. Это — явление выхода электронов из катода под воздействием сильного электрического поля — 105 В/см и выше. Такие напряженности у катода могут создаваться пространственными зарядами, а также в процессе расхождения контактов. Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент равна бесконечности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 105 —108 В/см. Ток автоэлектронной эмиссии весьма мал и может быть достаточным только для начала развития дугового разряда.

Термоэлектронная эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности. Если материал катода таков, что температура его кипения может превысить 2500 К, то эмиссия электронов с поверхности катода может происходить за счет термических процессов. Такое явление имеет место в электрических аппаратах при расхождении контактов, где последняя площадка контактирования сильно разогревается, часто до расплавления и испарения. На отрицательном электроде образуется катодное пятно (раскаленная площадка), которое служит основанием дуги и очагом излучения электронов.

Плотность тока термоэлектронной эмиссии зависит от температуры и материала контактов. Ток термоэлектронной эмиссии также невелик и может быть достаточным для возникновения электрической дуги, но недостаточен для ее горения.

Возможно и совместное существование автоэлектронной и термоэлектронной эмиссии при нагретом катоде.

Дуга может существовать между металлическими электродами и при холодном катоде. В этом случае имеет место в основном автоэлектронная эмиссия.

Ударная ионизация. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из нее электрон. В результате получается новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация называется ударной ионизацией.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью, зависящей от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пробега, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.

Энергия ионизации Vи для газов составляет 13-16 эВ (азот, кислород, водород) и до 24,5 эВ (гелий), для паров металла она примерно в два раза ниже (7,7 эВ для паров меди). Энергия ионизации газовой смеси определяется самой низкой энергией ионизации одного из компонентов и в очень малой степени зависит от концентрации этих компонентов. В короткой дуге всегда имеются пары металла электродов, и энергия ионизации, а следовательно, и степень ионизации дугового промежутка определяются энергией ионизации этих паров.

Следует отметить, что не всякий электрон, имеющий энергию выше энергии, соответствующей Ки ионизирует нейтральную частицу, так как только часть таких электронов приходит в должное соприкосновение с нейтральными частицами. При энергиях, меньших энергии, соответствующей Vи, вероятность ударной ионизации равна нулю, при больших энергиях эта вероятность возрастает.

Термическая ионизация. Это процесс ионизации под воздействием высокой температуры. Если рассмотреть ионизацию газа с точки зрения термических процессов, то оказывается, что при тех температурах, которые имеют место в дугах, ионизация значительно более вероятна при соударениях частиц в тепловом хаотическом движении, чем от воздействия электрического поля. Основной характеристикой термической ионизации является степень ионизации, представляющая собой отношение числа ионизированных атомов в газе дуги к общему числу атомов в этом газе

. Основные параметры аппаратов - student2.ru

Рис. 5-2. Зависимость степени ионизации от температуры

На рис. 5-2 приведена зависимость степени ионизации паров металлов (кривая 1) и воздуха (кривая 2) от температуры, построенная для Vи = 7, 5 эВ и Va = = 15 эВ [21]. Из рисунка видно, что при энергии ионизации, лежащей в области 7-8 эВ, и при температурах газа дуги 3000-6000 К можно наблюдать ионизацию, достаточную для обеспечения проводимости газа в дуговом канале. Термическая ионизация в воздухе практически прекращается при температурах ниже 3000 К.

Процесс распада сопровождается расходованием энергии, и температура канала дуги понижается.

Степень ионизации зависит не только то температуры, но и от давления, и от потенциала ионизации.

При повышении давления степень ионизации значительно снижается: так при T=16000 К

р=0,1 МПа xт = 0,61, а при р=10 МПа xт = 0,082.

Смесь газов имеет потенциал ионизации значительно отличающийся от потенциалов ионизации входящих в нее газов. Поэтому принято говорить о эффективном потенциале ионизации. Присутствие в смеси паров металла, например, меди, резко уменьшает этот потенциал.

Деионизацияидет одновременно с ионизацией. При возникновении и развитии дугового разряда преобладают процессы ионизации, в устойчиво горящей дуге процессы ионизации и деионизации одинаково интенсивны, при преобладании процессов деионизации дуга гаснет, дуговой разряд прекращается. Основными физическими процессами здесь являются рекомбинация и диффузия.

Рекомбинация. Процесс, при котором различно заряженные частицы, приходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электрона с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы. При рекомбинации происходит выделение энергии в виде фотона.

Различают рекомбинацию в объеме, когда третьим телом служит нейтральная частица газа, и рекомбинацию на поверхности, когда третьим телом служит поверхность вблизи дуги (стенка камеры). В последнем случае электроны заряжают поверхность стенки до потенциала, при котором положительные ионы притягиваются к этой поверхности и, присоединив электрон, образуют нейтральные частицы. Наличие в зоне дуги нейтральной поверхности усиливает рекомбинацию в 1000 и 10000 раз в зависимости от условий и свойств газа. Это явление используется в лабитинтно-щелевой камере ДУ электромагнитных выключателей, где рекомбинация на поверхности является определяющей.

Также решающую роль данный процесс имеет в вакуумных выключателях, где средняя длина пробега достигает нескольких см. В этих устройствах при коммутации возникают ионизированные пары металлов, деионизация которых осуществляется при осаждении их на поверхностях защитных экранов или электродов.

Для газовых выключателей основным является процесс рекомбинации в объеме газа.

Скорость рекомбинации в объеме прямо пропорциональна объемной плотности ионов и обратно пропорциональна кубу абсолютной температуры. При относительно небольших концентрациях ионов и невысоких температурах рекомбинация на поверхности превосходит рекомбинацию в объеме в 102 — 106 раз.

Поскольку для рекомбинации необходимо, чтобы заряженные частицы находились некоторое время вблизи друг друга, то , чем ниже скорость движения частиц, тем процесс рекомбинации эффективнее. А скорость в свою очередь, связана с кинетической энергией частиц, т.е. с их температурой. Следовательно, при снижении Т рекомбинация идет более эффективно.

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в стволе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур ствола дуги и окружающего пространства. Заряженные частицы, вышедшие из области дуги, в конечном итоге рекомбинируют вне этой области.

В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

В дуге, обдуваемой сжатым воздухом, а также в быстро движущейся открытой дуге деионизация за счет диффузии может по значению быть близкой к деионизации вследствие рекомбинации. В дуге, горящей в узкой щели или закрытой камере, деионизация происходит главным образом за счет рекомбинации.

Из рассмотрения процессов ионизации и деионизации следует, что основным фактором, обеспечивающим горение дуги, является ее высокая температура — термическая ионизация. Отсюда следует, что всемерное интенсивное охлаждение ствола дуги является преобладающим способом ее гашения. Газы с большей теплопроводностью и теплоемкостью обладают лучшей охлаждающей способностью, а следовательно, и лучшими дугогасящими свойствами. Например, кислород, углекислый газ, водяной пар и водород имеют по отношению к воздуху теплопроводность (среднюю в пределах 0-6000 К) соответственно 1, 8; 2, 5; 5 и 17 и дугогасящие свойства соответственно 1, 8; 2, 6; 3, 8 и 7.

2.2. Размыкание контактов и появление дуги.

Отключение цепи ЭА представляет собой процесс изменения сопротивления между двумя контактами от нескольких мкОм до десятков и сотен МОм. Схематично процесс размыкания контактов и образования между ними изоляционного промежутка можно представить следующим образом:

при расхождении контактов контактное нажатие между ними постепенно снижается и, следовательно, уменьшается фактическая площадь их соприкосновения. В результате увеличивается плотность тока на ней и ее температура. По мере дальнейшего движения контактов температура в точках их соприкосновения возрастает и к моменту их расхождения достигает температуры плавления металла контактов. Когда контакты расходятся на сотые доли мм, то между ними образуется мостик из жидкого металла, который вытягивается и сечение его уменьшается. По мере уменьшения сечения мостик интенсивно разогревается до температуры кипения металла. Мостик взрывается и между контактами загорается электрическая дуга, горящая в парах металла. По мере расхождения контактов дуга увеличивается.

В коммутационных АВН дуга должна быть погашена как можно быстрее. Однако условия горения дуги и внешние воздействия могут быть очень разными. В соответствии с условиями принята следующая классификация дуг:

По условиям гашения:

1. Короткие дуги, гашение которых обуславливается процессами на электродах

2. Длинные (плазменные), гашение которых обуславливается процессами в канале дуги.

По характеру внешних воздействий:

1. Стабилизированные, горящие в трубе

2. Открытые, свободно горящие в воздухе

3. Обдуваемые, подвергаемые воздействию продольного или поперечного потока газа

4. Щелевые, горящие в щели, образованной стенками из теплостойкого изоляционного материала

По форме:

1. диффузная дуга (рассеянная)- обычно дуга с небольшим током <1000А горит в рассеянном виде

2. канальная (сжатая) при больших токах. Переход зависит от электродов и скорости изменения тока.

2.3 ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОЙ ДУГИ Зависимости падения напряжения на стволе дуги от тока — вольтамперные характеристики дуги — приведены на рис 5-3. Кривая 1 представляет собой статическую характеристику дуги, т. е. падение напряжения на дуге при данном токе в установившемся равновесном состоянии, когда ионизация равна деионизации — подводимая к дуге мощность равна отводимой. Напряжение Uз, соответствующее началу дугового разряда на промежутке, носит название напряжения зажигания дуги. Характеристика имеет падающий характер — с ростом тока напряжение на дуге падает. Это означает, что сопротивление дугового промежутка уменьшается быстрее, чем увеличивается ток.

Если с той или иной скоростью уменьшить ток в дуге от /0 до нуля и при этом фиксировать падение напряжения на дуге, то получим ряд кривых 2, лежащих ниже кривой 1. Эти кривые носят название динамических характеристик. Чем быстрее будет уменьшаться ток, тем ниже будет лежать динамическая вольт-амперная характеристика дуги. Это объясняется тем, что при снижении тока такие параметры дуги, как сечение ее ствола, температура газа и степень ионизации, не успевают быстро измениться и приобрести значения, соответствующие меньшему значению тока при установившемся режиме. В пределе, при мгновенном изменении тока до нуля, получим прямую 3 — проводимость промежутка останется соответствующей току

Основные параметры аппаратов - student2.ru Основные параметры аппаратов - student2.ru

Рис 5-4 Распределение напряжения и градиента

напряжения в стационарной дуге постоянного тока

/0, а ток упадет до нуля. Кривая 3 — предел, практически недостижимый. Обычно при спаде тока динамические характеристики имеют возрастающий характер. Соответствующее этим характеристикам напряжение, при котором дуга гаснет, называется напряжением гашения Uг.

Для данного дугового промежутка, материала электродов и среды имеются одна вполне определенная статическая характеристика дуги и множество динамических, заключенных между кривыми 1 и 3.

Если падение напряжения на дуге UД характеризует дуговой промежуток как проводник, то напряжения U3 и UГ характеризуют изоляционные свойства промежутка - они означают напряжения, которые необходимо приложить при данном состоянии промежутка, чтобы возбудить в нем электрическую дугу.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения ил и продольного градиента напряжения Ед вдоль дуги приведена на рис. 5-4. Под градиентом напряжения понимают падение напряжения на единицу длины дуги. Как видно из рисунка, ход характеристик Uд и Eд в приэлектродных областях резко отличается от хода характеристик на остальной части дуги. У электродов, в прикатодной и прианодной областях, на промежутке длины порядка 10-4 см имеет место резкое падение напряжения, называемое катодным UK и анодным Uа. Значение этого падения напряжения зависит от материала электродов и окружающего газа. Суммарное значение прианодного и прикатодного падений напряжения составляет 15-30 В, градиент напряжения ( напряженность) достигает 105-106 В/см.

На катоде в зоне горения дуги образуется катодное пятно, которое несколько меньше поперечного сечения дуги. Катодное пятно склонно к быстрым перемещениям, плотность тока 104-107 А/см2. Температура нагрева= температуре плавления катода.

Роль анода в дуговом разряде пассивна, и даже если бы не было анодного напряжения , горение дуги было бы возможно.

В остальной части дуги, называемой стволом дуги, падение напряжения Uд практически прямо пропорционально длине дуги, т. к. ионы и электроны распределены в стволе равномерно. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100-200 В/см.

Около электродное падение напряжения U3 не зависит от длины дуги, падение напряжения на стволе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

Основные параметры аппаратов - student2.ru

Отвод энергии от ствола дуги при ее гашении должен превышать энергию, выделяемую в дуге. Отвод осуществляется тепловым излучением, теплопроводностью и турбулентной конвекцией.

2.4. Распределение температуры и плотности тока по сечению ствола дуги.

Максимум температуры наблюдается на оси ствола дуги. Поэтому наиболее высокая степень ионизации в центре, т.е. и наибольшая электропроводность там же. К переферии температура падает и сопротивление канала возрастает при Т=4000 к через него проходит всего 0,05% всего тока, а при 3000 К всего 0,001%.

Таким образом, весь ток проходит по сечению, на границе которого Т=4000К. Это сечение и ограничивает диаметр ствола дуги, который зависит от теплопроводности газа, а также эффективности охлаждения дуги, уменьшаясь с ее повышением. С уменьшением диаметра дуги плотность тока в ней растет. В современных коммутационных аппаратах плотности колеблются от 102 до 104 А/см2.

Принципы гашения дуги

Общие положения

 
  Основные параметры аппаратов - student2.ru

Для погасания дуги необходимо, чтобы напряжение, необходимое для горения дуги всегда было выше подводимого. Или через энергетические зависимости энергия ионизации д. б. меньше отводимой энергии. При отключении дуги переменного тока в ней выделится в момент гашения энергия

Энергия, запасенная в магнитном поле, будет минимальной, если дуга погаснет при первом прохождении тока через ноль. Если дуга начнет гаснуть раньше естественного перехода тока через нуль, то часть энергии магнитного поля не успеет вернуться в генератор и д.б. рассеиваться в дуге. Гашение дуги переменного тока в момент естественного прохождения тока через 0 облегчается.

Кривые изменения тока и напряжения на дуговом промежутке приведены на рис. 5-8, а. Допустим, что после прохождения тока через нуль в цепи появился ток. В момент появления тока резко возрастает напряжение на стволе дуги — это напряжение зажигания дуги Uз. За полупериод горения дуги напряжение на промежутке изменяется незначительно. При подходе тока к нулю напряжение вновь растет до напряжения гашения UT и при повторном зажигании после перехода тока через нуль снова достигает какого-то значения (7„ но противоположного знака. Соответствующая этому процессу вольт-амперная характеристика дуги за период приведена на рис. 5-8, б.

Для гашения дуги постоянного тока необходимо создать такие условия, при которых падение напряжения на стволе дуги на всем протяжении ее динамической характеристики будет больше подводимого напряжения, в пределе — напряжения сети. При переменном токе ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т. е. каждый полупериод дуга гаснет и зажигается вновь. Тепловая инерция дугового ствола, однако, оказывается довольно значительной, и в момент перехода тока через нуль температура ствола (газов) не всегда падает до прекращения термической ионизации. Переход тока через нуль не обусловливает гашение дуги, однако процессы после перехода тока через нуль в ряде случаев создают условия для ее гашения.

В открытой дуге при высоком напряжении, когда определяющим фактором является активное сопротивление сильно растянутого ствола дуги, условия гашения дуги переменного тока приближаются к условиям гашения дуги постоянного тока, и процессы после перехода тока через нуль мало влияют на гашение дуги.

Основные параметры аппаратов - student2.ru

Рис 5-8 Характеристики дуги переменного тока

В дугогаситетьных устройствах, где длина дуги незначительна и сопротивление ствола дуги практически не влияет на процесс гашения, условия гашения определяются из взаимосвязи процессов после перехода тока через нуль. Возможен также случай, когда надо считаться как с влиянием активного сопротивления, так и с условиями гашения при переходе тока через нуль

Открытая дуга переменного тока при высоком напряжении источника тока. Осциллограмма тока и напряжения на дуге приведена на рис 5-9 Гашение дуги здесь происходит главным образом вследствие растяжения дугового ствола и образования на нем высокого напряжения горения на всем протяжении полупериода Ток в цепи начинает заметно падать за несколько периодов до полного обрыва дуги. При определенной (критической) длине дуги напряжение сети оказывается недостаточным для поддержания ее горения. Наступает нарушение баланса мощностей (подводимой и отводимой), и ток в цепи быстро уменьшается и, наконец, совсем прекращается.

Дуга переменного тока в условиях активной деионизации. В дугогасительных устройствах выключателей длина ствола дуги мала и падение напряжения на стволе дуги, особенно при высоком напряжении, чрезвычайно мало по отношению к напряжению сети. При интенсивном охлаждении газовой или жидкой средой диаметр ствола дуги резко уменьшается, и его изменение следует почти синхронно с изменением тока. Во время подхода тока к нулю дуговой ствол приобретает весьма малые размеры и благодаря этому быстро разрушается после достижения током нулевого значения. Дуговой промежуток снижает свою проводимость и приобретает заметную электрическую прочность. Этому также способствует процесс перехода тока через нуль (сплошная линия на рис 5-10). Немного раньше момента естественного перехода через нуль ток дуги падает почти до нуля, а затем после перехода через нуль скачком снова достигает естественного значения, Образующаяся «бестоковая пауза» t-0 (или время ожидания пробоя tnp) способствует интенсификации деионизационных процессов и возрастанию сопротивления промежутка Повторное зажигание дуги в следующий полупериод связано с пробоем межконтактного промежутка.

Следует отметить, что при малоиндуктивной нагрузке бестоковая пауза больше, при большей индуктивности эта пауза меньше или очень мала (примерно 0, 1 мкс)

Таким образом, при каждом переходе тока через нуль возникает «соревнование» двух процессов, а именно процесса восстановления электрической прочности Um промежутка и процесса восстановления напряжения Uv на промежутке. Если нарастание эл. прочности будет опережать нарастание напряжения Uв на нем, то дуга погаснет при переходе тока через 0. Если же нарастание эл.прочности промежутка пройдет медленнее, то в момент времени, соответствующий т. О произойдет повторное зажигание дуги. В цепи появится ток iд и напряжение на дуге. Uз – напряжение зажигания. Рационально, если гашение осуществляется в первый после размыкания контактов переход тока через 0.

Основные параметры аппаратов - student2.ru

Рис 5-10 Переход тока через нуль

Основные параметры аппаратов - student2.ru Основные параметры аппаратов - student2.ru

Рис.5.11. Процессы после перехода тока через нуль; а – при гашении дуги, б – при повторном зажигании.

Основные параметры аппаратов - student2.ru Основные параметры аппаратов - student2.ru Рис. 5-14. восстановление электрической прочности коротких промежутков

Рис. 5-13. К анализу процессов в коротком дуговом промежутке: а — картина распределения заряженных частиц, б — изменение градиента напряжения по длине промежутка; в — распределение восстанавливающегося напряжения по промежутку

Наши рекомендации