А. Пуанкаре
М.В. Ломоносов
«Нет проблем решенных и проблем нерешенных,
Есть только проблемы более или менее решенные…»
А. Пуанкаре
Кафедра механики композитов организована на механико-математическом факультете 25 декабря 1987 году в связи с потребностью в развитии математических подходов и методов для исследования композитов, а также подготовки квалифицированных специалистов в этой области. Ее организатором и заведующим с момента основания является академик Российской академии естественных наук, лауреат государственной премии СССР, заслуженный деятель науки РФ, профессор Борис Ефимович Победря. Большинство сотрудников кафедры защитили свои курсовые, дипломные работы и диссертации под его научным руководством. Преподавательский и научный потенциал кафедры составляют представители научной школы Б. Е. Победри, которая начала формироваться еще на кафедре теории упругости.
Что же такое композиты? Под этим словом понимаются модели механики сплошной среды (МСС), материальные функции определяющих соотношений которых являются разрывными функциями координат. Композиты составлены из разнородных материалов (компонентов), физико-химически взаимодействующих между собой. Различают природные композиты (земная кора, дерево, биоткани) и искусственно созданные с заранее заданными свойствами. Как правило, эти свойства резко отличаются от свойств отдельных компонентов композита. Часто композит существует уже только в виде конструкции, т. е. конструкция из композита не отделима от материала. Это приводит к необходимости разработки новых подходов к испытаниям композитов и развитию математического аппарата для оптимального проектирования конструкций из них.
Особенности композита требуют для их расчёта применять не только детерминированный подход, но и стохастический (основанный на ситуации неопределенности), создавать специальную теорию эксперимента, математический анализ разрывных функций, теорию оптимального проектирования, разрабатывать алгоритмы решения краевых задач для неоднородных и анизотропных (имеющих не одинаковые свойства по различным направлениям внутри) сред. Перечисленные и другие особенности механики композитов отражаются на научных направлениях, развиваемых на кафедре, и на организации учебного процесса.
Выпускники кафедры механики композитов механико-математического факультета МГУ получают квалификацию «механик» со специализацией в области прикладной математики и механики. Однако на самом деле, ни одна кафедра мехмата не являются узко специализированной. Имея общие методологические проблемы и сходный аппарат прикладного анализа, различные направления как механики, так и математики, имеют глубинное взаимопроникновение и неразделимость. Играет свою роль и фундаментальный характер общего образования в Московском университете. Именно поэтому традиционно считается, что независимо от выбранного профиля обучения, выпускник мехмата буквально за месяц сможет включиться в любую серьезную проблему и в рамках ее работать на достойном уровне.
Какими же качествами должен обладать человек, чтобы успешно учиться и справляться с интересными, но сложными задачами кафедры механики композитов?
Ответ немного ошеломителен: самое главное – не блестящие способности или гений усидчивости, а просто… «нужно любить решать задачи». Очень важно также уметь правильно ставить их перед собой «Наука работает там, где первое, что приходит на ум, не срабатывает»…
Поскольку математический аппарат работает при известной доле допущений и упрощении описываемой ситуации, очень важно выделять ведущие параметры системы, все оценить и измерить, отсеять несущественное, исследовать свойства в изучаемой среде, и затем грамотно с ними работать. Направление исследований в области механики композитов обычно представляет собой движение от простых однородных материалов, на основании изучения которых складываются определенные механико-математические методы, к материалам сложным, путем адаптации полученных методов к решению новых задач в области механики композитов. Соответственно, необходимо чутье и элементы научной интуиции, стремление работать и искать ответы, даже в ситуации ограниченного времени.
Вместе с тем далеко не все преподаватели ведут только фундаментальные исследования. Кафедра и ее выпускники всегда активно сотрудничали с конкретными предприятиями, помогая им решать задачи, связанные с материалами и средами, строить технические модели. Именно здесь, на стыке науки и практики, происходит взаимопроникновение проблем и задач кафедры, решаются и рассчитываются разные композиты и исследуются их свойства.
В промышленности выпускники кафедры механики композитов всегда востребованы, поскольку помогают найти решения в самых различных сферах и отраслях.
Находят себя выпускники кафедры и в программировании, обеспечивая, к примеру, поддержку продукта такого уровня, как ABACUS, ANSYS – функционального программного комплекса конечно-элементных расчетов, включающего в себя модули расчетов прочности и динамики, температурных полей, гидрогазодинамики, электростатики/электромагнетизма, оптимизации, вероятностных и высоконелинейных расчетов.
В геологии математическим аппаратом механики композитов рассчитывается устойчивость гидродинамических сред, изучаются твердые, сильно неоднородные, деформированные, пластичные среды и их свойства. Происходит и моделирование грунтов, поскольку грунт по сути – тот же композит, состоящий из различных взвесей и воздуха. Таким образом, специалисты по композитам принимают участие в строительстве, геолого-разведочных работах, построении схем добычи природных ресурсов на месторождении. К примеру, в США отечественные специалисты были привлечены к решению проблемы извлечения сланцевого газа из горных пород. Используя механическую модель сланца, учитывающую свойства грунта и взаимодействие пород с водой, необходимо было рассчитать, где и сколько нужно закачать воды, чтобы вытеснить газ на поверхность. В результате воплощения в жизнь проведенных расчетов проект полностью увенчался успехом.
В последнее время идет активное взаимодействие механики композитов с новейшими химическими разработками, комплексно решая задачи изучения свойств новых композитных материалов (к примеру, вышеупомянутого резинокорда, различных сплавов, твердых композитов и нанокомпозитов – особенно бурно развивающейся сейчас отрасли междисциплинарных исследований).
Таким образом, и в технической сфере, и на практике механика композитов является крайне востребованной сферой приложения сил молодых специалистов, обладающих гибким мышлением в математике и творческим подходом в механике.
В воспитании этих качеств у подрастающего поколения на кафедре механики композитов существенное значение имеют не только фундаментальная учебная подготовка, но и открытые отношения между преподавателями и студентами. Уже установились определенные традиции, например, ежегодно проводить «дни рождения кафедры», футбольные встречи. Интересно, что сборные студентов еще ни разу не выиграли у сборной преподавателей. Кафедра поддерживать связь с выпускниками, некоторые из которых оказались теперь в ближнем и дальнем зарубежье. Кроме России выпускники кафедры работают на Украине, в Казахстане, в Узбекистане, в Грузии, на Кубе, в Мексике, в Нигерии, в США, в Китае, во Вьетнаме и других странах. Адрес домашней страницы кафедры: http://composite.msu.ru/. Она постоянно обновляется. Все доступные средства коммуникации помогают в учебном процессе и обмене опытом, позволяя узнавать о последних достижениях и работах в универсальной и многогранной области реализации механики композитов.
Научные результаты:
Были разработаны взаимообратные определяющие соотношения нелинейной термовязкоупругости, в которой учитывается эффект тепловыделения при деформировании, доказана ее корректность и решены практически важные задачи.
Разработаны деформационная теория пластичности и теория течения анизотропных материалов; на случай анизотропии обобщена общая теория процессов деформирования.
Созданы основы вычислительной механики композитов. За большой вклад в создание и развитие вычислительной механики композитов Б.Е.Победря был удостоен Государственной премии СССР.
Дана принципиально новая постановка задачи механики твердого тела в напряжениях. За цикл работ по развитию новой постановки задачи в напряжениях Б.Е.Победря и С.В.Шешенин в 2006 году были удостоены Ломоносовской премии.
Важным направлением работы коллектива является теория определяющих соотношений. Проведен анализ новых операторных определяющих соотношений анизотропных сред (вязкоупругих, упругопластических, вязкопластических, фильтрационно-консолидационных).
Разработаны теоретические основы расчета напряженно-деформированного состояния (НДС) шин как резинокордных композитов на основе трехмерного моделирования. Исследован и реализован в виде программ пошаговый метод решения нелинейных и неоднородных задач теории упругости.
Проведены исследования по фракталам в механике композитов (структура дисперсных и конструкционных материалов, перколяционные кластеры при разрушении композитов, аттракторы итерационных систем и др.). Изучены связи структуры композитов с их прочностью.
Сформулированы новые критерии прочности (в том числе и термодинамические), удобные при использовании методов вычислительной механики композитов
Разработаны эффективные численные методы решения трехмерных квазистатических задач линейной и нелинейной теории упругости, вязкоупругости и теории пластичности. Предложен и обоснован новый "быстросходящийся" метод последовательных приближений.
Исследована устойчивость процессов деформирования вязкопластических, идеальнопластических сред, сред с достаточно сложными определяющими соотношениями. Получены достаточные интегральные оценки устойчивости вязкопластических, идеально пластических и нелинейно-вязких течений.
Исследованы математические модели поведения биологических тканей в акустическом, электромагнитном и тепловом полях, взаимодействия биологических тканей с физическими полями в процессе медицинской диагностики и терапии. Изучены особенности возникающих при этом обратных некорректных задач. Предложена математическая модель томографа.
Исследованы процессы фильтрации жидкости в деформируемом твердом скелете для задач инженерной геологии. Создана математическая модель геотехногенных композитов и на ее основе решен ряд прикладных задач. Проведено исследование задач термодиффузии в композитах.
Без использования кинематических гипотез разработан принципиально новый подход к построению технических теорий балок, пластинок и оболочек из анизотропных композиционных материалов.