Тушение пожаров нефти и нефтепродуктов в резервуарах

Расчет сил и средств для тушения нефтепродуктов в резервуа­рах производят аналитическим методом, по табл. 6.9 - 6.11 и по таб­лицам, разработанным в гарнизоне, а также с помощью экспономет­ров.

Пожары нефтепродуктов в резервуарах отличаются характер­ными особенностями. Руководитель тушения пожара должен знать их, уметь предвидеть возможные осложнения и последствия от опас­ных факторов пожара (ОФП).

Для выполнения расчетов прежде всего необходимо располагать .энными о размерах пожара и геометрических параметрах резервуаров и иметь характеристики нефтепродуктов (см. табл. 6.12- 6.14).

При пожарах в подземных заглубленных железобетонных ре­зервуарах, а также в наземных со стационарными крышами и с понтонами за расчетную площадь тушения принимают площадь резервуара независимо от наличия или отсутствия автоматической си­стемы тушения пожара (АСТП).

При тушении пожаров в резервуарах с плавающей крышей в на­чальной стадии за расчетную площадь принимают площадь кольца, ограниченную стенкой резервуара и барьером для удержания пены, а при развившемся пожаре - всю площадь горящей емкости. В рас­четах АСТП за площадь тушения принимают площадь кольца.

ТАБЛИЦА 6.8. ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ ХАРАКТЕРНЫХ ПОКАЗАТЕЛЕЙ ТУШЕНИЯ ПОЖАРОВ НА ОТКРЫТЫХ ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ

№ п/п Показатель Формула Значение величин, входящих в формулу  
обозначение наименование, единица измерения  
Требуемый расход:  
1.1. Воды на тушение по­жара компактными струями из стволов Qтв = Q г Is   Qтв Требуемый расход воды на тушение по­жара, л/с  
1.2. Воды на тушение по­жара газоводяными струя­ ми АГВТ Qтв = N АГВТ QвАГВТ Q г Расход нефтепродукта, жидкости или га­за в струйном факеле, кг/с (см. табл. 6.7)  
Is Интенсивность подачи воды на тушение струйного факела, л/кг (см. табл. 2.9)  
N АГВТ Количество автомобилей газоводяного тушения соответствующего типа, шт.  
 
QвАГВТ Расход воды при работе установки: для АГВТ-100 - 60 л/с для АГВТ-150 - 90 л/с  
1.3. Водного раствора пе­нообразователя на тушение пожара     Qтр = Sт Iр     Qтр Требуемый расход раствора ПО, л/с  
Iр Интенсивность подачи раствора ПО, л/(м2´c) (см. табл. 2.5)  
Sт Расчетная площадь тушения пожара, м2 (принимается из условий обстановки, а при составлении оперативного плана по­жаротушения - равной площади пожара, рассчитанной по формуле табл. 1.14)  
1.4. Воды на орошение струйного факела пламени Qорв = Q г I ор   Qорв, Qохлв, Qзр Соответственно требуемый расход воды на орошение факела, охлаждение оборудо­вания и водного раствора пенообразователя для защиты оборудования, л/с­  
1.5. Воды на охлаждение технологического оборудования Qохлв = Sз Iохл I ор Интенсивность подачи воды на орошение струйного факела пламени, л/кг (см. табл. 2.9)  
            Iохл Интенсивность подачи воды на охлажде­ние аппаратов, л/(м2´c)  
1.6. Водного раствора пенообразователя на тепловую защиту оборудования пеной     Qзр = Sз Iз     Iз Интенсивность подачи водного раствора пенообразователя для защиты аппаратов пеной низкой кратности, л/(м2´c) - прини­мается равной 0,1 л/(м2´c)  
Sз Защищаемая площадь оборудования, м2  
  Расчетная площадь пожара на установке   Тушение пожаров нефти и нефтепродуктов в резервуарах - student2.ru   Sп Расчетная площадь пожара, м2  
Qзр Расход нефтепродукта при струйном истечении из аварийного аппарата, м/мин, (см. табл. 6.7)  
tИСТ Время истечения нефтепродукта, мин  
tвыг Скорость выгорания нефтепродукта, м/мин (см. табл. 1.6)  
tСВ Продолжительность горения до введения средств тушения, мин  
h сл Толщина слоя разлитого нефтепродукта, м  
    Число турбинных и щелевых распылителей для создания защитных водяных завес Nрасп =Qохл в / Q расп Nрасп =L/a Nрасп =Sз/Sзав Nрасп Число распылителей, шт.  
Qохл в Расход воды на охлаждение оборудования, л/с ­  
Q расп Расход воды из распылителя, л/с (см. табл. 6.4)  
L Длина защищаемого участка, м  
a Ширина завесы, м (см. табл. 6.4)  
Sз Площадь защищаемого участка, м2  
Sзав Площадь завесы, м2 (см. табл. 6.4)  
Количество пенообразователя на период тушения пожара и защиты оборудования Vпо=(Nтпр Qт пр 60tтр + + Nзпр Qзпр 60tзр)Kз Vп Требуемое количество пенообразователя, л  
Nтпр , Nзпр Соответственно число приборов подачи пены (СВП, ГПС) для тушения пожара и защиты аппаратов, шт.  
Qт пр ,Qзпр Соответственно расход пенообразователя из прибора, поданного на тушение пожа­ра и защиту аппаратов, л/с (см. табл. 3.30)  
tтр Расчетное время тушения пожара, равное 30 мин (см, п. 2.4)  
tзр Расчетное время тепловой защиты обору­дования, мин (принимается по конкретной обстановке)  
 
Kз Коэффициент запаса ПО, равный 3  
 

Количество автомобилей:
5.1. Газоводяного тушения (АГВТ) NАГВТ =QГ/QАГВТ NАГВТ Количество автомобилей газоводяного ту­шения, шт.
QГ Расход нефтепродукта при струйном исте­чении, кг/с (см. табл. 6.7)
QАГВТ Предельный расход нефтепродукта, кото­рый тушится одним АГВТ, кг/с (см. табл. 6.5)
5.2. Порошковых для туше­ния струйного факела   NАП =QГ/QАП NАП Количество автомобилей порошковых, шт.
QАП Предельный расход нефтепродукта, который тушится одним автомобилем порошковым, кг/с (см. табл. 6.6) ­­
NАП =Sт/SтАП     Sт Расчетная площадь тушения пожара, м2
SтАП Предельная площадь разлива нефтепро­дукта, которая может быть потушена одним автомобилем порошковым, м2 (см. табл. 6.6)
Требуемое количество основ­ных, специальных и вспомога­тельных автомобилей NмА Nрм Nм Требуемое количество автомобилей, шт.
Nрм Расчетное количество основных, специаль­ных и вспомогательных автомобилей, шт.
КА Коэффициент резерва: для летнего периода принимается равным 1,3, для зимнего - 1,5 расчетного количества ­

ТАБЛИЦА 6.9. ВРЕМЯ ПРЕДВАРИТЕЛЬНОГО РАЗБАВЛЕНИЯ ЭТИЛОВОГО СПИРТА ВОДОЙ ДО КОНЦЕНТРАЦИИ 70 % ДЛЯ РАЗЛИЧНОЙ ВЫСОТЫ УРОВНЯ ПРОДУКТА И ПРИ ЛЮБОМ ДИАМЕТРЕ РЕЗЕРВУАРА

Высота уровня спирта до начала разбавления, м Время разбавления спирта водой, мин, при интенсивности подачи воды, л/(с´м2) Высота уровня спирта после разбавления водой, м  
 
0,3 0,4 0,5 1,0  
1,0 1,35  
2,0 2,85  
3,0 4,30  
4,0 5,75  
5,0 7,15  
6,0 - 8,60  
7,0 - - 10,00  
8,0 - - 11,40  

Для резервуаров вместимостью до 400 м3, расположенных на одной площадке в группе общей емкостью до 4000 м3, за расчетную принимают площадь в пределах обвалования этой группы, но не более 300 м2. Площадь кольца в резервуарах с плавающей крышей определяют по формулам

Sк = p (R2-r2);

Sк = phк (2R-rк); ;

где Sк - радиус круга резервуара, м; hк - ширина кольца, ограниченного стенкой резервуара и барьером для удержания пены, м; rк - радиус малого круга, и (r = R - hк).

Резервуары охлаждают, как правило, ручными стволами А. Можно использовать также лафетные стволы с насадкой 25 мм, особенно при горении жидкости в обваловании, угрозе вскипания или вы6роса и для защиты арматуры на покрытиях подземных резервуаров. Охлаждению подлежат горящие резервуары по всей окружности и соседние по полупериметру емкости, обращенному в сторону очага горения. Соседними считаются резервуары, которые расположены от горящего в пределах двух нормативных разрывов. Нормативными являются разрывы, равные 1,5 диаметра большего резер­вуара со стационарными крышами из числа находящихся в группе, и одному диаметру - при наличии резервуаров с плавающими кры­шами и понтонами. Практически при пожарах в группе до четырех резервуаров охлаждению подлежат, кроме горящего, все соседние с ним емкости, а в группе из шести резервуаров, если гореть будет средний, охлаждать необходимо пять соседних, отстоящих в преде­лах нормативных расстояний.

Требуемое число стволов для охлаждения резервуаров определяют по формулам:

для горящего резервуара

Nгрст.А = PР Iср охл / Qст.А (6.1)

Iгр охл - интенсивность подачи воды на охлаждение горящего резервуара, л/(с´м2) (см. табл. 2.10); Рр -периметр резервуара (длина окружности), м.

Для соседнего резервуара

Nсрст.А = 0,5 PР Iср охл / Qст.А (6 .2)

гдеIср охл - интенсивность подачи воды на охлаждение соседнего резервуарa, л/(с´м2) (см. табл. 2.10).

В практически ориентировочных расчетах число водяных ство­лов для охлаждения резервуаров рассчитывают по формулам:

Для горящего резервуара

Nгрст.А = D /4; (6.3)

Для соседнего резервуара

Nсрст.А =D /20, (6.4)

где D - диаметр резервуара, м.

В итоге расчетное число стволов необходимо скорректировать с условиями осуществления боевых действий и принять для охлаж­дения горящего резервуара не менее трех стволов А (если по расче­ту меньше), а для соседнего - не менее двух. Это объясняется тем, что одним стволом практически невозможно обеспечить равномер­ное и непрерывное охлаждение полупериметра резервуара в течение длительного периода.

Число стволов на охлаждение дыхательной и другой арматуры подземных железобетонных резервуаров определяют по норматив­ным расходам воды, указанным в табл. 2.10, или по тактическим условиям обстановки на пожаре. Следует иметь в виду, что охлаждению подлежит арматура только на соседних резервуарах и расход воды принимается общий на суммарную емкость горящего резерву­ара и соседних с ним.

При расчетах необходимо предусматривать также четыре - шесть стволов А в резерве по условиям техники безопасности NТБст.А для защиты личного состава, работающего в обваловании, рукав­ных линий и технического вооружения, оказавшихся в зоне разлива вскипевшего нефтепродукта. На пожарах в подземных резервуарах эти стволы можно использовать для зашиты личного состава в период подачи пеногенераторов или пеносливов на исходные позиции тушения.

Исходя из сказанного, общее число стволов на охлаждение опре­деляют по формуле

Nст.А = Nгрст.А + Nсрст.А + NТБст.А (6.5)

Основным средством тушения пожаров нефти и нефтепродуктов В резервуарах является воздушно-механическая пена средней кратности (кратность 80-150) на основе пенообразователя ПО-1 и других (см. гл. 2), кроме этилового спирта, который тушится пеной средней кратности на основе пенообразователя ПО-1С с предварительным разбавлением жидкости в резервуаре водой до концентра­ция 70 %. Расчетную концентрацию ПО-1С в водном растворе при­нимают не менее 10%, а интенсивность его подачи - 0,35 л/(с´м2),

Горение спирта можно ликвидировать огнетушащими порошко­выми составами (ОПС) с интенсивностью их подачи 0,3 кг/(с´м2), а также водой путем разбавления жидкости в емкости до концент­рации 28 % и ниже. Подобное тушение применимо при опорожнении горящего резервуара не менее чем на 2 /3 его высоты.

Вода для разбавления спирта в резервуаре подается навесными струями из ручных или лафетных стволов, через генераторы пены средней кратности, установленные на пеноподъемниках в ходе подготовки к пенной атаке, а также с помощью сифонов, изготовленных из труб на месте пожара. Сифон приводится в действие путем заполнения его водой от насоса пожарной машины с последующим вводом спирта в подготовленные емкости. Время предварительного разбавления спирта водой до концентрации 70 % приведено в табл. 6.9.

Подача пены средней кратности на тушение пожара в наземном резервуаре осуществляется с помощью переносных пеноподъемников, оборудованных гребенкой на два ГПС-600 и механизированных пеноподъемников с гребенками для подсоединения требуемого коли­чества ГПС-600 или ГПС-200 (см. гл. 3). Необходимое число перено­сных пеноподъемников, оборудованных гребенками на два ГПС-600, определяют по формуле

N п.п = NГПС-600 / 2 (6.6)

Схема подачи генераторов и водяных стволов зависит от характеристики пожарного насоса, пеносмесИтеля или другого дозирующего устройства. На современных пожарных автомобилях устанавливают пеносмесители, которые обеспечивают работу четырех - пяти ГПС-600. Оптимальным вариантом подачи воды на охлаждение резервуаров является схема на четыре ствола А, подключенных к линиям через двухходовые или другие разветвления. Тогда пожарных машин для тушения пожара в наземных и подземных резервуарах без резерва потребуетс

На тушение пожара

Nтм = NГПС / N схГПС, (6.7)

Для работы стволов

Nзм = Nобщст.А / N схст.А, (6.7)

где Nтм , Nзм - соответственно количество пожарных машин, необходимых для обеспечения работы генераторов и водяных стволов А, шт.; NГПС - чиcлo требуемых генераторов соответствующего типа, шт.; N схГПС - число генераторов в схеме, работу которых обеспечивает одна пожарная машина, шт.; Nобщст.А - общее число стволов А, требуемых для защитных действий, шт.; Nсхст.А - число стволов в схеме, работу которых обеспечивает насос пожарной машины, шт.

С учетом изложенных особенностей расчет сил и средств для ту­шения пожаров нефтепродуктов в резервуарах выполняют по мето­дике, рекомендуемой в гл. 5.

ТАБЛИЦА 6.10. РАСЧЕТ СРЕДСТВ ТУШЕНИЯ НЕФТЕПРОДУКТОВ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ В, ЗАГЛУБЛЕННЫХ ЖЕЛЕЗОБЕТОННЫХ РЕЗЕРВУАРАХ ЦИЛИНДРИЧЕСКОЙ И ПРЯМОУГОЛЬНОЙ ФОРМ

Вид нефтепродукта Интенсивность подачи раствора, л/(с´м2) Параметры Требуемое число
Объем, м3 Площадь, м2 Генераторов, шт. Пенообразователя, т, при подаче Воды на пенообразование, л/с Воды для охлаждения арматуры, л/с Лафетных стволов для охлаждения дыхательной арматуры, л/с
ГПС -600 ГПС - 2000 ГПС -600 ГПС - 2000 ГПС -600 ГПС - 2000
Бензин, лигроин, бензол, толуол и другие с темпе­ратурой вспышки паров ниже 28 "С, кроме нефти 0,08 До 250 До 72 - 0,65 - -
- 1,3 - -
- 1,3 - -
2,0 2,2
2,9 2,2
3,9 4,3
3,9 4,3
6,5 6,5
6,5 6,5
12,4 13,0 2-3
6,5 6,5 2-3
11,7 10,8 2-3
12,4 13,0 2-3
20,1 21,6 2-3
20,1 19,5 2-3
37,6 38,9 2-3
30,5 30,3 4-5
57,0 56,2 4-5
41,5 41,1 4-5
74,5 74,5 4-5

Нефть, керосин, дизтопливо и другие нефтепродукты с температурой вспышки па­ров более 28 °С 0,05 До 500 До 113 - 0,65 - -
- 1,3 - -
- 1,3 - -
2-3 1,3-2,0 2,2 12-18
2,6 2,2
2,6 2,2 2-3
3,9 4,3 2-3
3,9 4,3
7,8 8,7 2-3
3,9 4,3
3-4 7,2 6,5-8,7 60-80 2-3
7,8 8,7 2-3
12,4 13,0 2-3
12,4 13,0 2-3
24,0 23,8 2-3
18,8 19,5 4-5
35,7 36,7 4-5
26,0 25,9 4-5
46,7 47,5 4-5

Примечания: 1. Параметры приняты для типовых резервуаров, которые нашли наибольшее применение на практике. 2. При пожарах в подземных железобетонных резервуарах струями воды охлаждают только дыхательную и другую арматуру, установленную на крышах соседних емкостей. 3. Для охлаждения арматуры преимущественно используют лафетные стволы с диаметром насадка 25 мм, напор у стволов принимают по тактическим условиям работы, но не менее 40 м.

ТАБЛИЦА 6.11. РАСЧЕТ СРЕДСТВ ТУШЕНИЯ НЕФТЕПРОДУКТОВ В РВС ПЕНОЯ СРЕДНЕЙ КРАТНОСТИ

Вид нефтепродукта Интенсивность подачи раствора, л/(с´м2 ) Площадь горения, м2 Требуемое число
генераторов, шт. пенообразователя с трехкратным запа­сом, т, при тушении стволов с диа­метром насадка 19 мм на охлаж­дение Воды, л/с
на тушение, при подаче На охлаждение горящего и соседнего РВС
ГПС -600 ГПС -2000 ГПС -600 ГПС -2000 горящего РВС. соседнего РВС ГПС -600 ГПС -2000
Бензин, лигроин, бензол, толуол и другие виды горючего с температурой вспышки ниже 280С, кроме нефти     0,08 До 77 - 0,65 - -
86-120 - 1,3 - -
168-183 - 1,95 - .4 -
2,6 2,2
3,9 4,3
8,4 8,6
14.3 15,1
25,3 25,9

Нефть, керосин, дизельное топливо и другие нефтепро­дукты с температурой па­ров более 28 °С   0,05   До 120 - 0,65 - -
168-252 - 1,3 - 3-5 - 37-52
2,6 2,2
5,2 6,5
9,1 8,6
15,6 17,3

ТАБЛИЦА 6.12. РАЗМЕРЫ ПРЯМОУГОЛЬНЫХ ЖЕЛЕЗОБЕТОННЫХ РЕЗЕРВУАРОВ ДЛЯ ХРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ

Объем резервуара, м2 Габаритные размеры, и
Длина Ширина Высота Площадь, м2
3,6
3,6
3,6 3,6 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8

ТАБЛИЦА 8.13. РАЗМЕРЫ ЦИЛИНДРИЧЕСКИХ ЖЕЛЕЗОБЕТОННЫХ РЕЗЕРВУАРОВ ДЛЯ ХРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ

Объем резервуара, м8 Диаметр, н Высота, ы Площадь, и8
1,8 3,6 3,6 4,8 4,8 4,8 4,8 4,8 7,8 7,8 9,0 9,0 9,0

Примечания: 1. Различают следующие виды резервуаров: заглубленные (подземные), когда покрытие резервуара находится ниже уровня поверхности земли на 30—60 см; полузаглубленные, когда покрытие резервуара находится над уровнем земли не более чем на половину высоты корпуса; наземные, когда весь резервуар расположен выше уровня поверхности земли. 2. Цилиндрические железобетонные резервуары подразделяются на две группе предварительно напряженным корпусом, но без предварительного напряженного днища и сборного покрытия (для хранения темных нефтепродуктов); с предварительно напряженным корпусом, монолитным днищем м покрытием (для хранения нефти и светлых нефтепродуктов).

ТАБЛИЦА 6.14. РАЗМБРЫ ЦИЛИНДРИЧЕСКИХ ВЕРТИКАЛЬНЫХ СТАЛЬНЫХ РЕЗЕРВУАРОВ ДЛЯ ХРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ

Объем резервуара, м3 Диаметр, м Высота, м Площадь, м2
4,01 4,16
4,68 4,16
4,74 6,91
6,68 4.14
6,63 6,92
7,11 5,61
7,69 7,37
8,63 6,61
8,53 7,39
9,26 7,44
9,86 8,26
10.44 8,34
11,38 8,87
11,38 9,70
12,33 8,94
14,62 11,92
15,22 11,26
17,90 11,92
22,80 11,92
34,20 11,92
45,60 17,92
30 000 45,60 17,88
60,70 17,88

Наши рекомендации