ЭДС,наводимые в первичной обмотке трансформатора,уравнения напряжения для первичной обмотки трансформатора.

ЭДС,наводимые в первичной обмотке трансформатора,уравнения напряжения для первичной обмотки трансформатора.

E1=4,44fw1Фm.....U1= -E1+r1*I1+X1*I1...

U1 – комплекс напряжения на первичной обмотке;

Е1 – комплекс ЭДС первичной обмотки;

I1 – комплекс тока первичной обмотки;

r1 – резистивное сопротивление первичной обмотки;

X1 – индуктивное сопротивление рассеивания первичной обмотки.

ЭДС,наводимые в первичной обмотке трансформатора,уравнения напряжения для первичной обмотки трансформатора.

E1=4,44fw2Фm.....U1= E2+r2*I2+X2*I2...

U2 – комплекс напряжения на вторичной обмотке;

Е2 – комплекс ЭДС вторичной обмотки;

I2 – комплекс тока вторичной обмотки;

r2 – резистивное сопротивление вторичной обмотки;

X2 – индуктивное сопротивление рассеивания вторичной обмотки.

6.Опыт холостого хода, параметры орпеделяемые при опыте.Опыт холостого хода (рис. 11.4, а) используют для определения коэффициента трансформации. При этом обмотку низшего напряжения подключают к устройству (потенциал — регулятор), позволяющему в широких пределах изменять напряжение, подводимое к трансформатору, а обмотку высшего напряжения размыкают. С целью определения коэффициента трансформации к обмотке низшего напряжения достаточно подвести напряжение 0,1 UH для трансформаторов малой мощности и (0,33...0,5) UH для трансформаторов большой мощности. Падение напряжения в первичной обмотке весьма мало. С допустимой точностью можно принять, что E1 = U1 и Е2 = U2, так как ток во вторичной обмотке практически равен нулю. Из опыта холостого хода трансформатора определяют также зависимости тока холостого хода Ix, потребляемой мощности Рх и коэффициента мощности cosφ от значения подводимого напряжения U1, при разомкнутой вторичной обмотке, то есть при I2 = 0. Ток холостого хода силовых трансформаторов составляет от 10 (для маломощных трансформаторов) до 2% (для мощных трансформаторов) номинального. При снятии характеристик холостого хода подводимое напряжение изменяют в пределах от 0,6 до 1,2 UH таким образом, чтобы получить 6...7 показаний. На рисунке 11.4,6 дан примерный вид характеристик холостого хода. Мощность холостого хода характеризует электрическую энергию, расходуемую в самом трансформаторе, так как со вторичной обмотки энергию при этом не потребляют. Энергия в трансформаторе расходуется на нагрев обмоток проходящим по ним током и нагрев стали сердечника (вихревые токи и гистерезис). Потери на нагрев обмоток (потери в обмотках) при холостом ходе ничтожно малы. Практически можно считать, что все потери холостого хода сосредоточены в стали сердечника и идут на его нагрев.

7.Опыт короткого замыкания трансформатора,параметры опр при опыте.Опыт короткого замыкания проводят по схеме, изображенной на рисунке 11.5, а. К обмотке низшего напряжения подводят напряжение, при котором в обмотке высшего напряжения, замкнутой накоротко, протекает номинальный ток. Это напряжение называют напряжением короткого замыкания еk%;его значение приводят в паспорте трансформатора в процентах номинального. Так как в этом опыте из-за малого напряжения, подведенного к обмотке низшего напряжения, магнитный поток в сердечнике весьма незначителен и сердечник не нагревается, то считают, что вся потребляемая трансформатором при опыте короткого замыкания мощность затрачивается на электрические потери в проводниках обмоток. Характеристики короткого замыкания (рис. 11.5,6) представляют собой зависимости потребляемого тока Ik мощности Pk и коэффициента мощности cosφ, от подведенного напряжения при замкнутой вторичной обмотке.

10. Схемы соеджинения обмоток 3-х фазных трансформторов. коэффициент исполльзования.Обмотки трехфазных трансформаторов соединяют звездой (Y) или треугольником (D). Обычно первичные обмотки соединяют в звезду, а вторичные - в треугольник или и те и другие обмотки соединяют в звезду.Трехфазный трансформатор имеет две трехфазные обмотки - высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A, B, С, конечные выводы - X, Y, Z, а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a,b,c,x,y,z......В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду -Y, либо в треугольник - Δ ...Фазный коэффициенттрансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе: nф = Uфвнх / Uфннх.... линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле: nл = Uлвнх / Uлннх.

11.Группы соединения обмоток 3-х фазных трансформаторов. с какой целью определяют.Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток

12.Условия включения трансформаторов на паралельную работу.при условии, что ни одна из обмоток не будет нагружена током, превышающим допустимый ток для данной обмотки.....Параллельная работа трансформаторов разрешается при следующих условиях: группы соединения обмоток одинаковы, соотношение мощностей трансформаторов не более 1:3, коэффициенты трансформации отличаются не более чем на ±0,5%, напряжения короткого замыкания отличаются не более чем на ±10%, произведена фазировка трансформаторов.

14.Автотрансформатор.Главное отличие автотрансформатора от обычного трансформатора состоит в том, что две его обмотки обязательно имеют между собой электрическую связь, они наматываются на одном стержне, мощность передается между обмотками комбинированным способом — путем электромагнитной индукции и электрического соединения. Это снижает габариты и стоимость машины ..

15. Принцип действия асинхронного двигателя.устройство статора асинхронной машины.На обмотку статора подается переменное напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться.............Неподвижная часть машины называется статор.Сердечник статора набирается из листовой электротехнической стали и запрессовывается в станину.На внутренней поверхности листов из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка (3). Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже – из алюминия.

16.Устройство асинхронной машины с к.з. ротором, конструкция основных сборочных узлов.состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. Сердечники ротора и статора имеют зубчатую структуру. В машинах малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора.

17.Устройство асинхронной машины с фазным ротором, конструкция основных сборочных узлов.Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведенную на контактные кольца, вращающиеся вместе с валом машины. С помощью графитовых или металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора: включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы. Снижая пусковой ток, добиваются увеличения пускового момента до максимального значения (в первый момент времени). Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке или требующих плавного регулирования скорости.включают индуктивности (дроссели) в каждую фазу ротора. Сопротивление дросселей зависит от частоты протекающего тока, а, как известно, в роторе в первый момент пуска частота токов скольжения наибольшая. По мере раскрутки ротора частота индуцированных токов снижается, и вместе с нею снижается сопротивление дросселя. Индуктивное сопротивление в цепи фазного ротора позволяет автоматизировать процедуру запуска двигателя, а при необходимости — «подхватить» двигатель, у которого упали обороты из-за перегрузки. Индуктивность держит токи ротора на постоянном уровне.включают источник постоянного тока, получая таким образом синхронную машину.включают питание от инвертора, что позволяет управлять оборотами и моментными характеристиками двигателя. Это особый режим работы (машина двойного питания). Возможно включение напряжения сети без инвертора, с фазировкой, противоположной той, которой запитан статор.

18.Аналогия между асинхронной машиной и трансформатаром. Эдс наводимые в обмотках статора в режиме хх.В асинхронном двигателе роль вторичной обмотки трансформатора играет роторная обмотка, а статорная является первичной обмоткой.....Необходимо здесь, однако, обратить внимание на следующее существенное различие между асинхронным двигателем и трансформатором.....У трансформатора, как известно, обе обмотки — первичная и вторичная, неподвижны, в то время как в асинхронном двигателе мы имеем только первичную (статорную) обмотку неподвижной, вторичная же (роторная) обмотка асинхронного двигателя является подвижной; благодаря этому частота токов, текущих во вторичной цепи (роторе) асинхронного двигателя, представляет собой переменную величину, чего, как известно, не наблюдается в трансформаторах.

20. Потери и КПД асинхронного двигателя.Потери делятся на механические, магнитные и электрические. Механические потери в асинхронном двигателе обусловлены трением в подшипниках и трением вращающихся частей о воздух. Добавочные потери вызваны наличием в двигателе полей рассеяния и пульсацией поля в зубцах ротора и статора. Коэффициент полезного действия асинхронного двигателя η = Р2/ Р1 = 1 - ∑р/ Р1.

21. Принцип работы 3-х фазного асинхронного двигателя.При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует эдс), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов. Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора. Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.

Наши рекомендации