Кристаллографические направления и плоскости

Упорядоченность кристаллического строения в пространственной решетке позволяет выделить отдельные кри­сталлографические направления и плоскости.

Кристаллографические направления - это характерные прямые линии, выходящие из точки отсчета, вдоль которых в кристаллической решетке располагаются атомы. Точками отсчета, могут служить вершины куба, а кристаллографическими направле­ниями - его ребра и диагонали, а также диагонали граней (рис. 1.4, а).

Кристаллографические направления и плоскости - student2.ru

Рис. 1.4. Кристаллографические направления и плоскости в кри­сталлической решетке: а) - основные направления и их обозначе­ние; б), в), г) - основные плоскости и их обозначение

Кристаллографическими плоскостями являются, напри­мер, плоскости граней кубов (рис. 1.4, б), а также их раз­личные диагональные плоскости вместе с находящимися на них атомами (рис. 1.4, в, г). Для ГПУ-ре­шеток кристаллографическими плоскостями могут быть плоскости оснований (рис. 1.2, г).

Для определения индекса какого-либо направления необ­ходимо найти индекс ближайшего к данной точке отсчета атома, находящегося на данном направлении. На­пример, индекс ближайшего атома вдоль оси ОХ обозначает­ся цифрами 100 (рис. 1.4,а). Эти цифры представляют собой координаты упомянутого атома относи­тельно точки О, выраженные через количество параметров вдоль осей OX, OY и OZ соответственно.

Индексы направления ОХ и параллельных ему направле­ний обозначаются [100]. Соответственно направления OY и OZ обозначаются [010] и [001]. Кристаллографические направления вдоль диагоналей граней XOZ, XOY и YOZ обозначают [101], [110] и [011]. Пользуясь указанной мето­дикой, можно определить индекс любого направления. На­пример, индекс направления вдоль диагонали куба выразит­ся так: [111].

Для определения индекса кристаллографической плоско­сти необходимо вначале найти координаты ближайших точек ее пересечения с осями координат, проведенными из точки отсчета О. Затем взять обратные им величины и записать их в круглых скобках в обычной последовательности. Напри­мер, координатами точек пересечения с осями координат бли­жайшей плоскости, параллельной плоскости XOY, выражен­ными через параметры решеток, являются числа Ґ, Ґ, 1 (см. рис. 1.4, б). Поэтому индекс этой плоскости можно запи­сать в виде (001).

Индексами плоскостей, параллельных плоскостям XOZ и YOZ, окажутся выражения (010) и (100) (рис. 1.4, б). Индекс вертикальной диагональной плоскости куба выразит­ся через (110), (рис. 1.2, в), а индекс наклонной плоско­сти, пересекающейся со всеми тремя осями координат на уда­лении одного параметра, примет вид (111) (см. рис. 1.4, г).

Анизотропия в кристаллах

Под анизотропией понимается неодинаковость механиче­ских и других свойств в кристаллических телах вдоль раз­личных кристаллографических направлений. Она является естественным следствием кристаллического строения, так как на различных кристаллографических плоскостях и вдоль различных направлений плотность атомов различна.

Например, в куби­ческих решетках (см. рис. 1.2, б, в) по направлениям вдоль ребер насчитывается меньше атомов, чем вдоль диагоналей куба в ОЦК-решетке или диагоналей граней в ГЦК-решетке. На плоскостях, проходящих через грани ОЦК- и ГЦК-решеток, находится меньше атомов, чем на диагональных плоскостях.

Поскольку механические, физические и химические свойства вдоль различных направлений зависят от плотности находя­щихся на них атомов, то перечисленные свойства вдоль раз­личных направлений в кристаллических телах должны быть неодинаковыми.

Анизотропия проявляется только в пределах одного монокристалла или зерна-кри­сталлита. В поликристаллических телах она не наблюдается из-за усреднения свойств по каждому направлению для огром­ного количества произвольно ориентированных друг относи­тельно друга зерен. Поэто­му реальные металлы являются квазиизотропными телами, т. е. псевдоизотропными.

Кристаллографические направления и плоскости - student2.ru Рис. 1.5. Элементарная ячейка решетки ОЦК Сдвиг в кристалле происходит наиболее легко вдоль атомных плоскостей с наиболее плотной упаковкой атомов. Рассмотрим объемно-центрическую кубическую решетку (ОЦК) (рис. 1.5):
а) 1) Плоскость ABCD (рис 1.6 а). Количество атомов в плоскости ABCD – 1; площадь ABCD = a2; площадь, приходящаяся на 1 атом – удельная площадь: Кристаллографические направления и плоскости - student2.ru – мера плотности упаковки.
б) Рис. 1.6. Плоскости решетки ОЦК а) - базисная плоскость; б) - плоскость с максимальной упаковкой атомов 2) Плоскость ABGH (рис 1.6 б). Количество атомов в плоскости ABGH – 2; площадь ABGH = a2 Кристаллографические направления и плоскости - student2.ru ; Кристаллографические направления и плоскости - student2.ru

В плоскости ABGH плотность упаковки больше чем в ABСD. Наиболее вероятен сдвиг вдоль диагональных плоскостей.

Аллотропия металлов

Некоторые металлы, например, железо, титан, олово и др. способны по достижении определенных темпера­тур изменять кристаллическое строение, т. е. изменять тип элементарной ячейки своей кристаллической решетки. Это явление получило название аллотропии или полиморфизма, а сами переходы от одного кристаллического строения к дру­гому называются аллотропическими или полиморфными.

На рис. 1.7 показано изменение свободной энергии F от температуры t для двух вариантов кристаллического строения же­леза: ОЦК (кривая 1) и ГЦК (кривая 2).

В интервале температур 911-1392оC железо имеет решетку ГЦК, так как при этом его свободная энергия меньше. При t<911°С и t>1392°С, у него должна быть ре­шетка ОЦК, обладающая меньшей свободной энергией.

Рис. 1.7. Изменение свободной энергии (Fсв) в зависимости от температуры (T) и типа кристал­лической решетки: 1 - для ОЦК-решетки; 2 - для ГЦК-решетки

Разные аллотропические формы металлов обозначают­ся буквами греческого алфавита, при этом низкотемператур­ные модификации обозначаются буквой a, а последующие в порядке роста температур - буквами b, g ,d ит. д. Аллотропическими формами железа являются: до 911°С - альфа-же­лезо (a-Fe), имеющее ОЦК-решетку, от 911°С до 1392 °С -гамма-железо (g -Fe) с решеткой ГЦК и от 1392°С до 1539 °С т. е. до температуры плавления - снова a-Fe с решеткой OЦK, однако, чтобы отличить его от низкотемпературной модификации, его принято называть дельта-железом (d -Fе).

Известное в практике так называемое немагнитное бета-железо (b -Fe) самостоятельной аллотропической формой не является, так как имеет такую же, как у a-Fe ОЦК-решетку и отличается от него только отсутствием магнитных свойств, которые оно теряет при 768°С (точка Кюри).

Наши рекомендации