Особенности конструкции крыла, конструктивные силовые схемы
При рассмотрении общей силовой работы крыла особое значение имеет его работа на изгиб. Изгибные деформации процентов на 50-70 определяют массу конструкции крыла. Практика самолетостроения выработала большое разнообразие конструктивных вариантов крыла и способов восприятия изгибающего момента. Все их можно классифицировать по нескольким конструктивно-силовым схемам, каждая из которых отличается принципом работы на изгиб. Обычно выделяют три основные силовые схемы - лонжеронную, кессонную и моноблочную.
На схеме цифрами обозначено:
1 - лонжерон, 2 - стенка, 3 - стрингер, 4 - обшивка.
Основными элементами крыла являются:
ñобшивка,
ñлонжероны,
ñпродольные стенки,
ñстрингеры,
ñнервюры.
Обшивка.
Внешняя поверхность крыла образуется обшивкой. У самолетов с небольшими скоростями полета может использоваться полотняная обшивка из хлопчатобумажных или синтетических тканей. На большинстве современных самолетов используется металлическая обшивка из алюминиевых сплавов. На сверхзвуковых скоростях полета находят применение обшивки из стали или титановых сплавов. В последнее время все шире начинают использоваться обшивки из композиционных материалов (КМ) - стекло-, угле-, боропластики.
Конструктивно обшивка может изготавливаться из металлических листов постоянной или переменной толщины. В качестве обшивки могут использоваться монолитные оребреные панели, получаемые фрезерованием, штамповкой или прессованием, клееные или сварные панели с сотовым заполнителем, клееные панели из КМ. Поверхность обшивки должна быть очень гладкой, допустимая шероховатость не более 5 мкм. С этой целью на обшивку наносится лакокрасочное покрытие с последующей полировкой.
Обшивка должна обеспечивать герметичность конструкции. Перетекание воздуха через щели в стыках обшивки увеличивает сопротивление крыла и ухудшает его аэродинамические качества.
Одна обшивка, как правило, не может обеспечить необходимой прочности и жесткости крыла, поэтому ее изнутри приходится подкреплять каркасом, состоящим из продольного и поперечного набора. К продольному набору относятся лонжероны, продольные стенки и стрингеры. Поперечный набор состоит из нервюр.
Лонжероны.
Лонжероны представляют собой тонкостенные силовые балки, состоящие из поясов и связывающих их стенок.
Лонжероны могут быть составными, собираемыми из отдельных элементов, или монолитными, изготавливаемыми штамповкой либо фрезерованием в виде одной детали. Силовые элементы лонжеронов изготавливаются из высокопрочных алюминиевых сплавов, сталей, титановых сплавов, КМ. При изгибе крыла пояса лонжерона работают на растяжение - сжатие, а стенка воспринимает касательные усилия. Для снижения массы конструкции материал поясов должен располагаться на наибольшем удалении от нейтральной оси сечения лонжерона.
Продольные стенки.
Ставятся для получения замкнутого контура крыла в случае, когда его хвостовая часть вырезана под элероны или закрылки, а также для увеличения жесткости крыла в вертикальном направлении. От лонжеронов стенки отличаются отсутствием силовых поясов. Слабые пояса в виде прессованных или гнутых уголков могут использоваться для удобства приклепывания к стенке обшивки.
Стрингеры.
Используются для подкрепления обшивки. Конструктивно выполняются в виде гнутых или прессованных профилей различного сечения. Стрингеры крепятся к обшивке и к нервюрам.
Нервюры.
Обеспечивают сохранение в полете заданной формы профиля и восприятие местной воздушной нагрузки крыла. Обычно нервюры разрезаются в местах пересечения с лонжеронами и продольными стенками и стыкуются с ними по всей высоте с помощью отбортовок или стоек.
Лонжеронная схема
В любом сечении такого крыла практически весь изгибающий момент воспринимается поясами лонжеронов (силовых элементов). Пояса при этом работают на осевые нагрузки растяжения-сжатия, образуя пару сил, уравновешивающую момент изгиба. Материал поясов в лонжеронном крыле используется весьма полноценно, т.к. общая потеря устойчивости сжатых поясов исключается из-за связи их с вертикальными стенками лонжеронов и с горизонтальной панелью обшивки, а местную потерю устойчивости сжатых поясов легко можно исключить рациональным подбором параметров его сечения - толщины и высоты полок. В результате, разрушение сжатых поясов будет происходить при напряжениях, близких к пределу прочности материала. Разрушающие напряжения растянутых поясов лонжерона также равны пределу прочности материала. В них следует лишь учесть ослабление поясов отверстиями под крепежные элементы.
По количеству лонжеронов различают одно-, двух-, трех- и многолонжеронные крылья. В разъеме лонжеронного крыла основные стыковые узлы устанавливаются по поясам лонжеронов, т.е. в отдельных точках сечения крыла. Такой стык получил название точечного стыка.В этом случае каждый лонжерон через стыковые узлы поясов передает весь изгибающий момент, подошедший к разъему, на ответные узлы. Этот способ крепления лонжерона обычно называют моментным узлом. Стыковые узлы по лонжеронам передают и часть перерезывающей силы, пришедшей по его стенке, а также могут передавать и составляющее усилие от крутящего момента. Кроме основных узлов стыка по лонжеронам в разъеме крыла могут устанавливаться дополнительные, обычно шарнирные, узлы на продольных стенках или просто на усиленной нервюре, которые обеспечивают передачу крутящего момента.
Кессонная схема
Кессонная силовая схема крыла предусматривает использование ослабленных поясов лонжерона, которые воспринимают небольшую часть изгибающего момента, а большая его доля передается на силовые панели, установленные между лонжеронами.
Силовые панели имеют различное конструктивное исполнение:
ñсборные панели из толстой обшивки и мощного стрингерного набора,
ñмонолитные панели с оребрением, изготовленные штамповкой или фрезерованием,
ñтрехслойные панели с сотовым заполнителем,
ñклееные панели из композиционных материалов.
При изгибе крыла аналогично поясам лонжеронов одна панель растягивается, а вторая - сжимается осевыми нагрузками. Разрушение сжатой панели определяется критическими напряжениями общей или местной потери устойчивости, которые всегда ниже предела прочности материала.
Кессонная схема крыла требует принципиально иной схемы стыковки в разъеме по сравнению с лонжеронными крыльями. Для полноценной передачи изгибающего момента силовые панели в разъеме должны стыковаться не в отдельных точках, а по всему контуру этой панели. Конструктивно такой контурный стык может выполняться по-разному - уголками, стыковыми фитингами, накладками и т.п.
Механизация крыла
Механиза́ция крыла́ — совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки, интерцепторы, спойлеры, флапероны, активные системы управления пограничным слоем и т. д.
К элементам механизации крыла, с помощью которых производится активное влияние на подъемную силу и затягивание срыва на взлетно-посадочных режимах, можно отнестищитки, закрылки, предкрылки.
Щитки– элементы механизации крыланаиболее часто применявшиеся ранее из-за простоты конструкции. Они могут быть простыми и выдвижными. Простые щитки – это управляемая поверхность, которая в убранном положении плотно прилегает к задней нижней поверхности крыла. При отклонении такого щитка между ним и верхней поверхностью крыла образуется зона некоторого разрежения. Поэтому верхний пограничный слой в эту зону как бы отсасывается. Это затягивает его отрыв на больших углах. При этом увеличивается скорость потока над крылом и, соответственно, падает давление.
Кроме того при отклонении щитка увеличивается кривизна профиля. Снизу происходит дополнительное торможение потока и, как следствие, увеличение давления. Поэтому общая подъемная сила растет. Все это позволяет самолету лететь с малой скоростью.
При использовании щитков подъемная сила на посадочном режиме может вырасти до 60%.
В настоящее время щитки применяются реже и в основном на легких самолетах. Наибольшее применения сейчас получили закрылки. Это когда часть задней кромки крыла отклоняется или выдвигается вниз. Они могут быть простые (или поворотные
и выдвижные (их еще называют закрылками Фаулера), которые, в свою очередь, могут при выпуске образовывать профилированные щели. При этом количество щелей обычно бывает от одной до трех.
Простой закрылок увеличивает подъемную силу за счет увеличения кривизны профиля. При этом увеличивается давление на нижней поверхности крыла. Выдвижной закрылок увеличивает еще и площадь крыла, что также повышает его несущие свойства.
Теперь самолет может лететь с небольшой скоростью, не рискуя упасть и уверенно чувствуя себя как на посадке, так и на взлете. Однако надо понимать, что выпущенные (особенно на большой угол) щитки и закрылки создают еще и немалоеаэродинамическое сопротивление. Поэтому закрылки (щитки) обычно могут выпускаться (отклоняться) на разные углы. На взлете эти углы меньше, на посадке — больше.
Следующий элемент механизации крыла—предкрылки. Чтобы расширить возможность самолета летать на больших углах атаки (а значит и с меньшей скоростью), то есть как говорят «затянуть срыв потока» и были придуманы предкрылки.
Чаще всего предкрылки отклоняются на фиксированные углы. Однако существуют так называемые адаптивные или автоматические предкрылки.
В обычном полете они прижаты к крылу встречным потоком, но на больших углах атаки, когда условия обтекания крыла приобретают специфический характер, такие предкрылки как бы «отсасываются» и выдвигаются вперед на величину, соответствующую условиям обтекания. Такие действия происходят в течение всего полета.
Предкрылки и закрылки обычно работают в комплексе. Однако для разных типов самолетов возможны специфичные режимы их раздельной работы. Например дозаправка в воздухе.
Еще один вид механизации крыла, применяемый для предотвращения срыва потока при полетах на больших углах атаки – это отклоняемый носок передней кромки крыла. Он применяется на крыле с тонким профилем, где предкрылок выполнить было бы проблематично.