Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы.

Когда работа сил поля зависит лишь от начального и конечного положений частицы, каждой точке поля можно сопоставить некоторую функцию U(x,y,z) такую, что разность значений этой функции в точках 1 и 2 будет определять работу сил при переходе частицы из первой точки во вторую: Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Пусть на частицу действуют только консервативные силы. Тогда работа, совершаемая над частицей на пути 1—2, может быть представлена в виде Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru . Эта работа идет на приращение кинетической энергии частицы. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Величина Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru для частицы, находящейся в поле консервативных сил, остается постоянной, т. е. является интегралом движения.

Функцию U(x,у,z) называют потенциальной энергией частицы во внешнем поле сил. Величину E- полная механическая энергия частицы. Работа, совершаемая над частицей консервативными силами, равна убыли потенциальной энергии частицы.Зная вид функции U(x,y,z), можно найти силу, действующую на частицу. Рассмотрим перемещение частицы параллельно оси х на dx. При этом совершается работа dA =Fx dx. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Выражение, стоящее справа, представляет собой производную функции U(x,y,z), вычисленную в предположении, что переменные у и z остаются неизменными – частная производная. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Консервативная сила равна градиенту потенциальной энергии, взятому с обратным знаком: Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Конкретный вид функции U(x,y,z) зависит от характера силового поля. Найдем в качестве примера потенциальную энергию частицы в поле сил тяжести. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru , Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru . Пусть на частицу, кроме консервативных сил, действует также неконсервативная сила Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru . Тогда при переходе частицы из точки 1 в точку 2 над ней будет совершаться работа Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Работа неконсервативных сил затрачивается на приращение полной механической энергии частицы.

В системе, состоящей из N не взаимодействующих между собой частиц, находящихся в поле консервативных сил каждая из частиц обладает кинетической энергией Ti = miui2/2 и потенциальной энергией Ui=U(xi,yi,zi) Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Полная механическая энергия системы невзаимодействующих частиц, на которые действуют только консервативные силы, остается постоянной. Это закон сохранения энергии.Если на частицы действуют неконсервативные силы, полная энергия системы не остается постоянной . При наличии в системе сил трения полная механическая энергия системы уменьшается, переходя в немеханические формы энергии. Такой процесс называется диссипацией энергии. Силы, приводящие к диссипации энергии, называются диссипативными.

Вопрос № 13

Потенциальная энергия взаимодействия. Работа внутренних сил в системе 2х взаимодействующих частиц. Потенциальная энергия гравитационного взаимодействия. Закон сохранения энергии для системы взаимодействующих частиц.

Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Пусть системы состоит из двух взаимодействующих друг с другом частиц. Система замкнутая. Допустим, что модуль сил взаимодействия зависит только от расстояния между частицами.

Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru , Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru , Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Левая часть - приращение кинетической энергии системы за время dt, правая часть –– работу внутренних сил за то же время.

Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Скалярное произведение Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru равно — приращению расстояния между частицами Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru . Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Выражение Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru можно рассматривать как приращение некоторой функции от Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru . Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

dAвнутр=dT = –dU Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Величина E = T + U для рассматриваемой замкнутой системы сохраняется. Функция U(R12) представляет собой потенциальную энергию взаимодействия. Она зависит от расстояния между частицами. Работа сил не зависит от путей, по которым перемещались частицы, и определяется лишь начальным и конечным расстояниями между частицами. Силы взаимодействия являются консервативными. Закон сохранения энергии: Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается постоянной. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Если в замкнутой системе действуют неконсервативные силы, то полная механическая энергия системы не сохраняется. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Если система незамкнута, то полная механическая энергия системы тел, на которые действуют, лишь консервативные силы, остается постоянной — закон сохранения энергии для незамкнутой системы. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Найдем вид функции Uвз в том случае, когда сила взаимодействия обратно пропорциональна квадрату расстояния между частицами: Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru . В случае притяжения между частицами a > 0, а в случае отталкивания частиц друг от друга a < 0. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Потенциальная энергия взаимодействия определяется с точностью до произвольной постоянной. Обычно полагают, что при Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru потенциальная энергия обращается в нуль. Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Сила гравитационного притяжения: Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru Потенциальная энергия во внешнем поле сил. Связь потенциальной энергии и силы. Закон сохранения механической энергии для систем невзаимодействующих частиц. Диссипативные силы. - student2.ru

Вопрос № 14

Наши рекомендации