Прочность и упругость кристаллических и аморфных полимеров

Семчиков 163-168.

При растяжении кристаллических полимеров оси макромолекул ориентируются, т. е. располагаются в направлении действия растягивающей силы. В результате действия внешней силы вдоль оси макромолекулы изменяются расстояния между атомами, возникают продольные колебания атомов, изменяются углы между химическими связями, а также углы вращения вокруг связей. Упругость полимера связана с растяжением химических связей основной цепи и деформацией валентных углов, прочность – с разрывом химических связей. О последнем свидетельствует обнаружение свободных радикалов при разрушении полимера. Методом ЭПР было показано, что свободные радикалы появляются при растяжении волокон на 40-60 % от разрывного значения, непосредственно перед разрушением образца число радикалов резко возрастает.

В результате действия внешней силы расстояние между атомами изменяется, потенциальная энергия системы возрастает. После прекращения внешнего воздействия избыток потенциальной энергии расходуется на механическую работу, необходимую для того, чтобы система вернулась к исходному состоянию. При растяжении образца расстояния между атомами увеличиваются, возникает упругая сила, препятствующая разъединению атомов. При определенном расстоянии эта сила, являющаяся результирующей сил притяжения и отталкивания атомов, достигает максимального значения. Если внешняя растягивающая сила превысит максимальное значение силы межатомного взаимодействия, то связь рвется.

Несоответствие между теоретическими и экспериментальными величинами прочности является характерной особенностью полимерных материалов, в том числе и рассмотренных в таблице высокомодульных волокон, прочность которых не превышает 4∙103 МПа. Это объясняется несовершенством кристаллической структуры полимеров, для которой характерно чередование кристаллических и аморфных областей. При разрыве волокон ориентированного полимера силы, приложенные в осевом направлении, передаются в основном на проходные макромолекулы, число которых составляет 10-30 % от числа макромолекул, расположенных в кристаллических областях. Уже из этих цифр ясно, что реальная прочность ориентированных кристаллических полимеров должна быть в несколько раз меньше теоретической. Показательно, что в случае металлов, кристаллическая структура которых более совершенна, удается вырастить нитевидные монокристаллы (усы), их экспериментально определяемая прочность близка к теоретической.

В отличие от кристаллических полимеров, для которых возникновение упругой силы связано с межатомным взаимодействием, механизм действия (возникновения) упругих сил при растяжении аморфных полимеров обусловлен изменением потенциальной энергии межмолекулярного взаимодействия, преимущественно потенциальной энергии вращения вокруг ковалентных связей. Из сказанного ясно, что в первом приближении модуль упругости аморфных стеклообразных полимеров можно оценить, измеряя модуль упругости кристаллических полимеров в направлении, поперечном вытяжке, т. к. в этом направлении макромолекулы кристаллического полимера связаны лишь физическими межмолекулярными связями. Из табл. 4.3 следует, что в поперечном направлении значение модуля упругости кристаллических полимеров составляет 3-4 ГПа. Однако модуль упругости стеклообразных полимеров существенно ниже. Одно из вероятных объяснений этого несоответствия состоит в том, что даже в «замороженных» конформа-циях под действием приложенного напряжения возникает определенная подвижность сегментов и, следовательно, напряжение релаксирует. Напомним, что аналогичным является механизм вынужденной эластичности, рассмотренный выше.

Оценка прочности неориентированных аморфных стеклообразных полимеров может быть сделана, исходя лишь из полуэмпирических расчетов. Прежде всего, уточним содержание понятия «прочность» в данном случае. Из рис. 4.9 следует, что при растяжении аморфного стеклообразного полимера при Т>Тхр можно получить две количественные характеристики прочности - предел текучести и напряжение, при котором образец физически разрушается. Обе характеристики с точки зрения поставленной задачи неприемлемы, ибо в первом случае образец не разрушается, а течет, во втором - мы имеем дело с ориентированными макромолекулами, что не соответствует исходному условию. Уже упоминалось, что вид деформационной кривой существенно зависит от скорости деформации. При ее увеличении кривые растяжения приобретают вид кривой 1, приведенной на рис. 4.9, а предельное значние напряжения называется пределом хрупкости σхр. Когда разрыву образца предшествует кривая растяжения типа 1, говорят о хрупком разрушении, когда кривая 2 - о пластическом разрушении. Исходя из сказанного, было введено понятие критической прочности σкр, равной напряжению, при котором меняется механизм разрушения (от хрупкого к пластичному).

При разрыве аморфного стеклообразного полимера должны разделиться «замороженные» клубки макромолекул. Поскольку клубки являются взаимопроникающими, при их разделении необходимо затратить энергию как на преодоление межмолекулярного взаимодействия при «скольжении» цепей, так и на разрыв некоторого количества химических связей, образующих зацепления. Ясно, что и та, и другая составляющие тем больше, чем больше приходится число связей на единицу сечения.

Наши рекомендации