Стабилизаторы напряжения постоянного тока. Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение
Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.
Делиться на :
1.1 Линейный стабилизатор :представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.
1.1.1 Параллельный параметрический стабилизатор на стабилитроне
Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов.
1.1.2 Последовательный стабилизатор на биполярном транзисторе Основными моментами, необходимыми для понимания работы этого стабилизатора, являются:
1) Напряжение Ube практически не зависит от величины тока, протекающего через p-n переход и для приборов на основе кремния приблизительно составляет 0,6В. В расчётах схем на биполярных транзисторах чаще всего используют именно такое значение, реже 0,7В. Это напряжение, необходимое для преодоления так называемого потенциального барьера p-n перехода, существующего между областями эмиттера и базы;
2) Напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон и равно напряжению стабилизации стабилитрона.
Но выходное напряжение Uout = Uz — Ube. То есть выходное напряжение Uout постоянно и не зависит от тока, протекающего по нагрузке. Можно сказать, что выходное напряжение не зависит от величины нагрузки RL. Изменения входного напряжения Uin также не приводят к изменениям выходного напряжения Uout. Вариант объяснения работы этого стабилизатора, начинающийся с предположения об изменении выходного напряжения Uout с последующей компенсацией за счёт изменения тока, не даёт понимания откуда берётся первоначальное изменение Uout. На самом деле незначительные изменения Uout вызваны незначительными изменениями напряжений Ube=0,6 В и Uz, вызванными изменениями протекающих через них токов. А причиной изменения токов является изменение величины нагрузки RL + изменение входного напряжения Uin.
1.1.3 Последовательный компенсационный стабилизатор с применением операционного усилителя
Часть выходного напряжения Uout снимаемая с потенциометра R2 сравнивается с опорным напряжением Uz на стабилитроне D1, разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.
1.2 Импульсный стабилизатор
Импульсный стабилизатор напряжения
В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении.
В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):
Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
Повышающе-понижающий стабилизатор: выходное напряжение стабилизировано, может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение незначительно отличается от требуемого и может изменяться, принимая значение как выше, так и ниже необходимого.
Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение выходного напряжения может быть любым.
2 Стабилизаторы переменного напряжения
Стабилизаторы напряжения трехфазные и однофазные позволят обеспечить стабильное напряжение 220В±(0.9%-5.5%), если на входе оно изменяется в диапазоне от 100В до 307В.
Билет №9
Параметры стабилизаторов напряжения
1. Номинальное выходное напряжение стабилизатора UН, В; и пределы его изменения: верхний UН.МАКС и нижний UН.МИН.
2. Пределы регулировки выходного напряжения стабилизатора: верхний UН,РЕГ,МАКС, нижний UН.РЕГ.МИН, В.
3. Номинальное значение тока нагрузки стабилизатора и пределы его изменения: максимальное IН.МАКС и минимальное IН.МИН.
4. Нестабильность выходного напряжения, которое определяется как отношение изменения выходного напряжения DUН к номинальному значению выходного значения стабилизатора UН при заданных изменениях входного напряжения или тока нагрузки.
5. Коэффициент нестабильности по напряжению dUН, % определяется при заданном изменении входного питающего напряжения на величину DUВХ и IН=const.
6. Коэффициент полезного действия стабилизатора hСТ определяется как отношение полезной мощности, отдаваемой в нагрузку, к мощности, потребляемой от источника входной электроэнергии
Билет №10
Первичные источники питания.