Основні параметри евольвентного зачеплення
Основною кінематичною умовою для профілів зубців зубчастих коліс є умова сталості передаточного числа. Цій умові задовольняють багато кривих, за допомогою яких можуть бути окреслені профілі зубців. Однак профілі зубців повинні бути такими, щоб сприяти нескладному виготовленню зубчастих коліс із різним числом зубців та забезпечувати високій ККД передачі, достатню міцність зубців тощо. Цим вимогам найбільше відповідає евольвентне зачеплення, і тому його широко застосовують у зубчастих передачах загального машинобудування.
Евольвентне зачеплення, ідея якого належить Л. Ейлеру, має суттєві технологічні та експлуатаційні переваги: простота побудови евольвентних профілів зубців; евольвентні зубці як прямозубих, так і косозубих коліс можуть бути точно нарізані простим інструментом рейкового типу; одним інструментом можна нарізати колеса з різним числом зубців, оскільки профіль евольвентного зубця окреслюється однотипною кривою; правильність евольвентного зачеплення не порушується при відхиленнях міжосьової відстані коліс від розрахункового значення; евольвентне зачеплення допускає виправлення (коригування) робочого профілю зубців із метою вибору оптимальних відрізків евольвенти, що забезпечує кращу роботоздатність, ККД та інші характеристики передачі.
Зубці з евольвентним профілем можуть бути нарізані на зубчастих колесах як зовнішнього, так і внутрішнього зачеплення.
На рис. 22.3 показане зачеплення зубців з евольвентним профілем двох зубчастих коліс. При перекочуванні прямої NN без ковзання по колу діаметром db1 точка Р, що належить прямій NN, описує евольвенту, яка є профілем зубця колеса 1, а при перекочуванні прямої NN по колу діаметром db2 точка Р описує евольвенту, яка є профілем зубця колеса 2. Пряма NN називається відтворюючою, а кола діаметром db1 та db2 називаються основними. Точка Р перетину спільної відтворюючої прямої NN із лінією центрів 0102 зубчастих коліс називається полюсом зачеплення. Пряма NN є спільною нормаллю у точці Р до евольвент, що описують профілі зубців коліс 1 і 2, а відрізки АР і ВР є відповідними радіусами кривини профілів зубців у точці Р їхнього дотикання. При обертанні зубчастих коліс точка дотикання профілів зубців постійно знаходиться на лінії NN, тобто спільна нормаль до профілів зубців займає постійне положення.
Рис. 22.3. Параметри зубчастої передачі
Основний закон зачеплення стверджує, що профілі зубців двох коліс повинні бути такими, щоб спільна нормаль до них у довільній точці дотикання профілів проходила через полюс зачеплення Р, який ділить міжосьову відстань 0102 на відрізки, обернено пропорційні кутовим швидкостям зубчастих коліс.
Отже, евольвентне зачеплення відповідає вимогам основного закону зачеплення, оскільки точка Р займає постійне положення на лінії центрів O1O2. Відповідно з основним законом зачеплення
.
Рівність колових швидкостей зубчастих коліс [ω1 dω1= ω2 dω2 за виразом (22.1)] свідчить про те, що при обертанні зубчастих коліс кола діаметрами dω1та dω2перекочуються одне по одному без ковзання. Ці кола називаються початковими колами, а відповідні їм циліндри у циліндричній і конуси у конічній зубчастих передачах називаються початковими циліндрамиі початковими конусами.Діаметри dω1 та dω2 називаються початковими діаметрами зубчастих коліс.
Єдиним параметром, що визначає форму евольвенти, є діаметр основного кола db, оскільки кожному конкретному колу відповідає одна певна евольвента. Зі збільшенням діаметра db евольвента стає більш полога, а при db = ∞ перетворюється у пряму лінію. У цьому разі зубчасте колесо перетворюється у зубчасту рейку, яка має прямолінійний профіль зубців.
Із наведеного вище випливає, що відтворююча пряма (спільна нормаль NN) є лінією зачеплення, тобто геометричним місцем точок контакту спряжених зубців при обертанні зубчастих коліс.
Кут αtω між лінією зачеплення та прямою, перпендикулярною до міжосьової лінії, називається кутом зачеплення.
Співвісна циліндрична поверхня зубчастого колеса, яка є базою для визначення розмірів елементів зубців, називається ділильною поверхнею (ділить зубець на дві частини – головку та ніжку).
Концентричне коло, що лежить у торцевому перерізі колеса і належить ділильній поверхні, називається ділильним колом. Діаметри ділильних кіл позначають d1 і d2 і називають ділильними діаметрами зубчастих коліс. На рис. 22.3 ділильні та початкові кола збігаються.
За висотою зубці обмежені поверхнею вершин зубців та поверхнею впадин. Концентричне коло, що належить поверхні вершин, називається колом вершин зубців, а концентричне коло, що належить поверхні впадин, називається колом впадин. Діаметри кіл вершин зубців позначаються da1 і da2 (відповідно для шестірні та колеса на рис. 22.3) і називаються діаметрами вершин зубців. Відповідно діаметри кіл впадин позначаються df1 і df2 і називаються діаметрами впадин.
Відстань між одноіменними профілями двох сусідніх зубців по дузі концентричного кола зубчастого колеса називається коловим кроком зубців і позначається Pt (рис. 22.3 і 22.4, а). Розрізняють ділильний, початковий та інші колові кроки зубців, що відповідають ділильному, початковому та іншим концентричним колам зубчастого колеса. Для косих та криволінійних зубців (рис. 22.4, б, в), крім колового кроку Pt , розрізняють нормальний крок з у б ц і в Рn, який є найкоротшою відстанню по ділильному або однотипному співвісному колу зубчастого колеса між одноіменними профілями двох сусідніх зубців, а також осьовий крок зубців Рх.
Центральний кут концентричного кола зубчастого колеса, який дорівнює 2π/z , де z – число зубців зубчастого колеса, називається кутовим кроком зубців і позначається τ .
Лінія перетину бічної поверхні зубця з ділильною, початковою або іншими співвісними поверхнями зубчастого колеса називається лінією зубця.
Гострий кут між лінією зубця та лінією перетину співвісної поверхні, якій належить ця лінія зубця, з площиною, що проходить через вісь зубчастого колеса, називається кутом нахилу лінії зубця, або кутом нахилу зубця. Кут нахилу зубця позначається β (рис. 22.4, б, в).
Рис. 22.4. Форма та розміщення зубців зубчастих коліс
Із рис. 22.4,бмаємо зв'язок між Рnта Ptі Рх
Рn = Pt · cos β; Рх = Рn / sin β. (22.2)
Кут повороту зубчастого колеса від моменту входу зубця в зачеплення до моменту виходу його із зачеплення називається кутом перекриття і позначається φγ.
Відношення кута перекриття зубчастого колеса передачі до його кутового кроку називається коефіцієнтом перекриття і позначається εγ:
εγ = φγ / τ, (22.3)
Коефіцієнт перекриття визначає середнє число пар зубців, що одночасно знаходяться у зачепленні. Якщо εγ = 1,6, то це означає, що 0,4 періоду зачеплення одного зубця у зачепленні знаходиться одна пара зубців, а 0,6 періоду зачеплення того самого зубця у зачепленні знаходяться дві пари зубців.
Із збільшенням коефіцієнта перекриття підвищуються плавність роботи та несуча здатність передачі, зменшуються динамічні навантаження та шум передачі. Тому у швидкохідних та високонавантажених передачах замість прямозубих використовують косозубі, шевронні колеса або колеса з криволінійними зубцями, які забезпечують більші коефіцієнти перекриття.
Коефіцієнт перекриття завжди повинен бути більшим за одиницю, у противному разі при роботі зубчастої передачі можуть виникнути моменти, коли у зачепленні не буде знаходитися жодна пара зубців і передача буде працювати з ударами.
Лінійна величина, що в π раз менша за коловий крок зубців, називається коловим модулем зубців mt,алінійна величина, що в πраз менша за нормальний крок зубців, називається нормальним модулем зубців mn,:
mt = Pt/π; mn = Рn/π.(22.4)
На основі формул (22.2) та (22.4) маємо співвідношення :
– для косих та криволінійних зубців mn = mt · cos β , (22.5)
для прямих зубців mn = mt = m.
Модулі зубців стандартизовані (у прямозубих колесах колові mt, = m, а в косозубих нормальні mn). У ГОСТ 9563–60 наведено значення модулів, починаючи від 0,05 до 100 мм. Стандартні модулі від 1 до 18 мм такі:
1–й ряд 1 1,25 1,5 2 2,5 3 4 5 6 8 10 12 16
2–й ряд 1,125 1,375 1,75 2,25 2,75 3,5 4,5 5,5 79 11 14 18
Модуль зубців є основною характеристикою розмірів вінців зубчастих коліс Надалі стандартний модуль зубців прямозубих коліс, будемо позначати т (без індекса), а при визначенні розмірів косозубих коліс будемо використовувати стандартний нормальний модуль mn.
Довжина ділильного кола зубчастого колеса
πd = zPt = zPn /cos β.
Із записаного співвідношення визначається ділильний діаметр косозубого колеса d = mn · z /cos β. (22.6)
Для прямозубого зубчастого колеса при β = 0 відповідно маємо
d = m · z. (22.7)
До параметрів евольвентного зачеплення належить також кут профілю зубця. Гострий кут у поперечному перерізі зубця між дотичною до профілю зубця у даній точці та лінією, яка проходить через цю точку і центр колеса, називається кутом профілю зубця (рис. 22.4, г). Розрізняють ділильний α, початковий αw та інші кути профілю зубця, які відповідають точкам на ділильній, початковій та інших співвісних циліндричних поверхнях. У разі збігання початкових та ділильних коліс початковий кут профілю зубця αwдорівнює куту зачеплення α t w.
Не можна змішувати поняття початкового та ділильного кіл зубчастих коліс. Ділильне коло – постійна геометрична фігура даного зубчастого колеса, діаметр якого залежить тільки від модуля та числа зубців. Початкове коло – поняття кінематичне і у окремо взятого колеса такого кола не має. Про початкові кола говорять, коли розглядають колеса, що знаходяться у зачепленні. Як зазначалось вище, ці кола стикаються у полюсі зачеплення і при обертанні зубчастих коліс перекочуються одне по другому без ковзання.
Якщо міжосьова відстань зубчастої передачі
aw = (dl + d2)/2 = mn · (zl + z2)/(2 cos β), (22.8)
то ділильні і початкові кола зубчастих коліс збігаються. При зміні міжосьової відстані awпередачі діаметри ділильних кіл не змінюються, а діаметри початкових кіл змінюються пропорційно зміні aw.Тоді
dw1= 2aw /(u + 1); dw2 = 2aw · u/(u + 1),(22.9)
де u – передаточне число зубчастої передачі за співвідношенням (22 1). Його також визначають і як відношення чисел зубців зубчастих коліс:
u = z2/z1. (22.10)