Стоячие акустические волны. Акустические резонаторы
Билет 1.
Вопрос 1.
Предмет механики. Пространство и время в механике Ньютона. Система отсчёта. Кинематика материальной точки. Закон движения. Скорость, угловая скорость, ускорение, угловое ускорение.
Механика –наука о движении и равновесии тел. При построении теории физика заменяет реальные обьекты их идеализированными моделями. Движение – это изменение относительнеого положения тела с течением времени. Впервые принципы механики сформулированы Ньютоном в «Математических началах натуральной философии». Тело или система тел, относительно которых определяется положение остальных тел называется простанственной системой отсчета (ПСО). В качестве ПСО можно взять произвольное твердое тело и связать с ним координатные оси, например, декартовой системы координат. Существует два вида координатных систем: 1) правая, 2) левая. Определяются они с помощью правила буравчика.
Пространство (по Ньютону) – это совокупность физического тела и возможных его продолжений.
Время – это показание каких-то часов (под часами понимается любое тело или система тел, в которых совершается периодический процесс,служащий для измерения времени).
Материальная точка – это тело, размеры которого пренебрежимо малы, что в рассматриваемом движении их можно не принимать во внимание и считать, что все вещество тела как бы сосредоточено в одной точке. Материальная точка – это абстракция, идеализированный образ реально существующих тел.
Движение материальной точки будет описано полностью, если известно ее положение в любой момент времени относительно выбранной системы отсчета. Полное описание движения сводится к нахождению трех координат: x = x(t); y = y(t); z = z(t); или к нахождению векторной функции r = r(t). .
– мгновенная скорость.
Производная скорости по времени называется ускорением материальной точки: ,
Понятие угловая скорость и угловое ускорение относятся к случаю движения материальной точки по окружности. Положение точки М на окружности задается углом a, который составляет радиус-вектор точки М с неизменным направлением ОХ. Производная этого угла по времени называется угловой скоростью w: . Если w = Сonst, то движение равномерно. n=w/2p – число оборотов в единицу времени (частота обращения).
Первая призводная угловой скорости и вторая производная угла по времени – это угловое ускорение: . Продифференцируем S=r´a по времени и получаем:
S’=(r’)*a+(a’)*r=w*r
S’’=(w*r)’=r*w’+r’*w=re (тангенциальное ускорение)+v*w (=v2/r — центростремительное).
Вопрос 2.
Стоячие акустические волны. Акустические резонаторы.
При наложении распространяющихся навстречу монохроматических волн одинаковой частоты, амплитуды (например, прямой и отражённой) образуются стоячие волны.
s(t,x)=Acos[w (t–x/c)]–Acos[w (t+x/c)]=2Asin[w x/c]sinw t
В каждой точке порисходит гармоническое колебание с частотой w, причём амплитуда зависит от положения точки по закону: А(х)=2А|sin[wx/c]|
Акустическая волна – это периодическое возмущение плотности среды, распространяющееся в среде со скоростью звука. Периодические возмущения плотности среды называются акустическими колебаниями. Акустические колебания бывают продольными (колебания вдоль направления распространения волны) и поперечными (колебания в плоскости, перпендикулярной направлению распространения волны).
Стоячая акустическая волна – это акустическая волна, которая является суперпозицией прямой и отраженной волны в ограниченной среде. Распределение амплитуды стоячей волны (пучности и узлы) зависит от физических параметров среды и граничных условий.
Акустический резонатор – это устройство, предназначенное для получения резонанса акустических колебаний в среде, заполняющей устройство. Акустический резонатор имеет ряд собственных резонансных частот, каждая из которых имеет собственную добротность и, соответственно, затухание. Ряд колебаний на резонансных частотах резонатора называются модами резонатора.
Распространенные примеры:
1. Камертон – устройство для настройки музыкальных инструментов, издающее звук, высота которого соответствует одной из семи нот музыкального ряда.. Для камертона важным является не только долгое ( малое затухание) и чистое звучание, но и возбуждение только одной из мод этого резонатора. Именно форма камертона позволяет возбуждать колебание только одной моды с высокой добротностью. Остальные моды имеют низкую добротность колебаний.
2. Кварцевый резонатор – это устройство, где в качестве акустической среды используется пластинка кристаллического кварца. Пластинка хорошо отполирована, грани выполнены с высокой степенью параллельности. Длины волн собственных мод колебаний описывабтся уравнением
L = n lр/2,
где lр- длина волны, которая может испытывать резонанс при длине резонатора L, n – целое число.
Билет 2.
Вопрос 1.
Инерциальные системы отсчёта. Преобразования Галлилея. Инварианты этого преобразования.
Система отсчёта, в которой все свободные тела движутся прямолинейно и равномерно называется инерциальной.
Утверждение впервые высказанное Г. Галилеем, о том, что во всех инерциальных системах координат механические явления протекают одиноково, называется принципом относительности Галилея. В дальнейшем в результате изучений других явлеий, в частности электромагнитных, справедливость этих полоений была признана для любых явлений. В таком общем виде оно называется принципом отнгсительности СТО или просто принципом относиельности
Преобразования Галилея.Рассмотрим систему отсчета, либо неподвижную, либо движущуюся с постоянной скоростью и с единым временем. Для этих систем справедлив принцип относительности Галилея. Имеется система отсчета К и система отсчета К’, которая движется со скоростью V относительно системы К.
[x; y; z; t x’; y’; z’; t’]
Физическая сущность этого преобразования составляет принцип относительности Галилея
1. t = t’
2. DL = DL’ (длины отрезков одни и те же).
Следующие преобразования отражают механический принцип относительности:
x’ = x – vt ; y’ = y; z’ = z; t’ = t
Обратные преобразования: x = x’ + vt ; y = y’; z = z’; t = t’
(из них можно получить закон сложения скоростей)
Уравнения, остающиеся неизменными при переходе от одной системы отсчета к другой, называются инвариантными.
События, одновременные в одной системе, одновременны и в другой, т. е. утверждение об одновременности двух двух событий имеет абсолютный характер, независимый от системы координат.
Длинна – инвариант преобразований Галлилея. Длинной движущегося стержня наз. расстояние между координатами его концов в некоторый момент времени. Следуя из этого инвариантность длинны легко доказывается.
Интервал времени явл. инвариантом преобразований Галлилея (Dt=t2–t1=t’2–t’1=Dt’)
Сложение скоростей получается из дифференциирования формул преобразования Галлилея.
Ускорение инвариантно относительно преобразований Галлилея. Это утверждение доказывается дифференциированием преобразований скорости и учитывая, что Dt=Dt’.
Вопрос 2.