Реверсирование вентиляторов
Необходимо отметить, что, согласно действующих ПБ, 60 % реверсивной производительности должно обеспечиваться в каждой из подземных выработок (согласно ПЛА); следовательно, с учётом специфики воздухораспределения в шахтах – вентиляторы, для выполнения указанных требований в реверсивном режиме, должны давать 100 и более процентов от прямого режима, что могут обеспечить только осевые вентиляторы, реверсируемые поворотом лопаток рабочего колеса на угол 120 от минимального.
Реверсирование осевых вентиляторов, как известно, возможно двумя основными способами: 1 – без изменения направления вращения; 2 – с изменением направления вращения. При реверсировании с изменением направления вращения (без поворота лопаток рабочего колеса) «диффузорная решётка» вентилятора становится «конфузорной», лопатка рабочего колеса (РК) «работает» задней кромкой вперёд, кривизна профиля лопатки становится обратной («противоестественной») – поэтому резко падает коэффициент полезного действия решётки РК и вентилятор в реверсивном режиме может обеспечить не более 75% прямого режима.
При реверсировании осевых вентиляторов без изменения направления вращения путём поворота лопаток РК до угла 1350 (т. е. на 1200 от минимального, что реализовано в наших разработках по вентиляторам серии ВО), вентилятор может обеспечить 100% и более от производительности прямого режима.
При реверсировании одного из опытно-промышленных вентиляторов ВО-21К (первая из работающих машин нового ряда серии ВО) нами получена производительность реверсивного режима в пределах 94–96 % от прямого режима за 40 с без остановки вентилятора.
Следует учитывать не только глубину, но и надёжность реверсирования производительности, пути повышения которой специалистами определены как: 1 – обеспечение возможности включения устройств реверсирования струи на ходу вентилятора; 2 – возможность опробования устройств реверсирования многократным включением при проверке; 3 – сокращение числа последовательно соединённых элементов в устройстве реверсирования и т. п.
Указанные пути повышения надёжности реверсирования полностью реализованы в установках с вентиляторами серии ВО, которые дополнительно содержат ручной привод, позволяющий оператору при отказе электрооборудования 0,4 кВ среверсировать вентилятор вручную за 60–90 с.
Реверсирование осевых вентиляторов. Реверсирование с обходным каналом.
Вопрос
Способы реверсирования течения
Способы реверсирования течения в осевых вентиляторах схемы К + СА схематично приведены на рис. 2 (схема К является частным случаем).
Рисунок 2 (подробнее) Способы реверсирования течения в осевых вентиляторах схемы К + СА |
Cпособ I – реверсирование течения поворотом лопаток колеса на угол 180° с одновременным изменением направления вращения. При повороте лопаток колесо приобретает аэродинамическую симметрию. Если вентилятор состоит из одного колеса (схема К) и является КС, то вентилятор будет иметь на всех режимах степень реверсивности R = 100%. Это наиболее эффективный способ, так как лопатки при реверсировании работают абсолютно в таких же условиях, как и при нормальном течении.
Cпособ II – реверсирование изменением направления вращения без поворота лопаток колеса. Это наиболее простой и поэтому наиболее часто используемый способ реверсирования.
Cпособ III – реверсирование поворотом лопаток колеса на угол 180° – 2·θк (θк – угол установки лопаток колеса) без изменения направления вращения. В этом случае при повороте лопаток закон изменения углов установки профилей лопаток по радиусу противоположный тому, который имеет место при нормальном течении, то есть лопатки имеют обратную крутку. Из-за этого периферийные сечения лопаток обтекаются под большими углами атаки, что наряду с обтеканием острых (задних) кромок лопаток приводит к большим потерям и ухудшению аэродинамических характеристик вентилятора при реверсировании.
Во всех случаях кроме отмеченных потерь имеют место потери из-за неоптимальной формы лопаток СА, поэтому при реверсировании течения лопатки СА должны быть повернуты в реверсивное положение.
Реверсирование способом I используется в основном в специальных вентиляторах, потребляющих большую мощность, где реверсирование течения является равноправным, а не аварийным режимом (например, шахтные вентиляторы). Несмотря на конструктивную сложность этого способа реверсирования, его достоинствами являются высокая эффективность и возможность создавать высоконагруженные реверсивные вентиляторы (ψ ≥ 0,3).
Реверсирование способом II и III в основном используется в вентиляторах, когда реверсирование является аварийным режимом. Наибольший интерес представляет II способ, так как для реверсирования течения достаточно только изменить направление вращения колеса. В последнее время благодаря простоте исполнения этот способ находит широкое применение в специальных вентиляторах, например, для проветривания туннелей метрополитенов, где реверсивный режим не является аварийным. Однако этот способ реверсирования обладает существенным недостатком – малой эффективностью, если вентилятор изначально не является реверсивным, то есть если в нем использованы не реверсивные лопатки.
В настоящей статье рассмотрены особенности реверсирования способом II и возможности улучшения реверсивных свойств общепромышленных вентиляторов за счет использования специальных лопаток.
В ряде технологических процессов, вентиляции сооружений, туннелей, шахт необходимо изменять направление движения воздуха на обратное, то есть реверсировать течение. Если рассматривать известные типы вентиляторов, такие как осевые, радиальные, диаметральные, то реверсирование течения за счет изменения направления вращения колеса (и/или поворота лопаток колеса) может быть осуществлено только в осевых вентиляторах. В радиальных и диаметральных вентиляторах при изменении направления вращения колеса резко ухудшаются характеристики вентилятора, но направление движения воздуха не меняется, поэтому реверсирование течения может быть осуществлено только за счет системы обводных каналов.