Литейные сплавы и их характеристика

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

«Казанский государственный технологический университет»

Литьё в разовые песчаные формы

Методические указания

К лабораторной работе

Казань, 2007

УДК 621.7

Г41

Авторы : доцент В.В.Жиляков, доцент В.Г.Кузнецов ,

Под ред. профессора Ф.А. Гарифуллин

Литьё в разовые песчаные формы: Метод. указания к лабораторной работе /Казан. Гос. технол. ун – т .Сост.:

В.В.Жиляков, В.Г.Кузнецов

Казань,2007. 25с.

Описана технология получения отливок в разовые песчаные формы.

Предназначена для студентов механических и технологических специальностей, изучающих дисциплину «Материаловедение».

Подготовлены на кафедре технологии конструкционных материалов. Печатаются по решению методической комиссии общепрофессиональных дисциплин.

Рецензенты:

Литьё в разовые песчаные формы

Цель работы: освоить технологические операции изготовления отливки методом литья в разовой песчаной форме.

Задания:

1.Дать краткое описание последовательности технологических операций по изготовлению литейной формы и отливки.

2. Выполнить эскиз отливки.

3 Приготовить формовочную смесь

4. Изготовить литейную форму.

5.Провести заливку

6.Зарисовать в сборе литейную форму вместе с литейной оснасткой.

Приборы, материалы, инструмент.

Для выполнения работы нужно иметь литейную оснастку, в состав которой входят модель, стержень, две опоки ( верхняя и нижняя), формовочная смесь, элементы, литниковой системы, формовочный инструмент, муфельная печь.

С целью получения основных представлений об отливке детали в качестве модельной жидкости применяем олово, сплав Вуда или парафин, который предварительно плавят в водяной бане с электрическим подогревом.

Теорeтическая часть.

Сущность литейного производства состоит в получении отливок - литых металлических изделий путём заливки расплавленного метала или сплава в литейную форму. Литьём получают детали как простой, так и очень сложной формы с внутренними полостями, которые нельзя или очень трудно получить другими способами. Во многих случаях это наиболее простой и дешёвый способ получения изделий.

1. Основные этапы производства отливок.

1. Разработка чертежа отливки.

2. Изготовление модели и стержневого ящика.

3. Изготовление формы из заранее приготовленной формовочной смеси.

4. Сборка формы (установка ранее изготовленного из стержневой

смеси стержня и соединение частей формы).

5. Заливка формы ранее расплавленным сплавом или металлом.

6. Охлаждение формы с отливкой.

7. Освобождение отливки от формы.

8. Отрезка литников и прибылей

9. Отжиг отливок.

10. Термообработка.

11. Контроль.

Основные свойства литейных сплавов и влияние их на качество

Отливок.

К основным свойствам литейных сплавов, которые обеспечивают возможность проведения процесса, относят следующие:

1. Жидкотекучесть - это способность сплава в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке. Жидкотекучесть определяют по стандартной пробе в виде канала определенной длины и диаметра с литниковой чашей (рис 1).

Литейные сплавы и их характеристика - student2.ru

Рис.1. Простейшая проба на жидкотекучесть.

Жидкотекучесть определяют по длине пути, пройденному жидким металлом до затвердевания. Чем длиннее пруток, тем больше жидкотекучесть. Высокую жидкотекучесть (>700 мм) имеют силумины, серый чугун, кремнистая латунь;

среднюю жидкотекучесть (350-340 мм) имеют углеродистые стали, белый чугун, алюминиево-медные и алюминиево-магниевые сплавы;

низкую жидкотекучесть имеют магниевые сплавы.

С повышением температуры сплава жидкотекучесть увеличивается.

2. Кристаллизация - это процесс перехода от жидкого состояния расплава к твердому состоянию с образованием структуры. Кристаллизация сплава происходит в направлении перпендикулярном поверхности теплоотвода. Скорость кристаллизации меняется от максимальной у поверхности до минимальной в центре стенки отливки (рис.2).

Литейные сплавы и их характеристика - student2.ru

Литейные сплавы и их характеристика - student2.ru

Рис. 2. Изменение кристаллической структуры по сечению отливки.

1 - литейная “корка”. 2 - столбчатые кристаллы.

3 - крупнозернистые кристаллы. 4 - литейная форма.

Для создания равномерной кристаллической структуры желательно уменьшить толщину отливки. Наилучшие свойства имеют сплавы при мелкокристаллической (мелкозернистой) структуре. Изменением скорости охлаждения невозможно достигнуть равномерной структуры. С целью получения мелкозернистой структуры в сплавы вводят особые добавки - модификаторы для силумина АЛ -2 - натрий, для серого чугуна - магний.

Процесс кристаллизации и кристаллическое строение отливки зависят от ее формы, температуры заливки сплава, от марки сплава, от вида литейной формы. На рис.2 показана качественная картина влияния этих параметров на кристаллическое строение отливки.

3. Усадка - свойство металлов и сплавов уменьшать свои размеры и объем при затвердевании и охлаждении. При затвердевании отливки выделяются также ранее растворенные расплавом газы. Усадка может способствовать образованию усадочных раковин, а выделяющиеся при охлаждении отливки газы способствуют образованию газовых раковин. Различают линейную и объемнуюусадку.

Линейная усадка изменяет линейные размеры отливки по сравнению с соответствующими размерами формы и при неблагоприятной конструкции заготовки образует трещины и коробление из-за торможения усадки в отдельных местах. Линейную усадку определяют соотношением:

Литейные сплавы и их характеристика - student2.ru , где lф и lотл – размеры полости формы и отливки при температуре 20°C.

Объёмная усадка - уменьшение объёма сплава при его охлаждении в литейной форме при формировании отливки.

Объемная усадка приводит к образованию усадочных раковин (рис.3)

Литейные сплавы и их характеристика - student2.ru

Рис. 3. Схема образования усадочной раковины (а - г) и схема вывода усадочной раковины в прибыль (д).

Объёмную усадку определяют соотношением, %:

Литейные сплавы и их характеристика - student2.ru

где Vф и Vотл – объем полости формы и отливки при температуре 20°C. Объемная усадка приблизительно равна утроенной линейной усадке.

На рис.3 представлена схема образования концентрированной усадочной раковины. Часто имеют место случаи образования рассеянных раковин. При затвердевании в полости формы есть три фазы сплава:

1) жидкая,

2) твердая,

3) жидкая и твердая или двухфазная зона.

При затвердевании в двухфазной зоне могут возникнуть рассеянные поры. Увеличение толщины твердого слоя происходит до тех пор пока в двухфазной зоне не возникает сплошной скелет из кристаллов. Теперь жидкий металл, питающий затвердевающую зону, встречает значительное сопротивление своему продвижению, которое увеличивается по мере уменьшения ячеек указанного скелета. И при прекращении питания каких-либо ячеек при дальнейшем охлаждении в них возникает усадочная межкристаллическая раковина. Раковины там меньше, чем позже прекратилась связь жидкого раствора с питаемой ячейкой.

В этом случае возникает рассеянная микропористость. Эти поры нарушают сплошность металла и могут при значительных механических нагрузках являться концентраторами напряжений (как надрезы) и тем самым ухудшать механические свойства деталей.

Для уменьшения влияния на качество отливки усадочных концентрированных раковин применяют два способа:

а) одновременное затвердевание,

б) направленное затвердевание.

Одновременное затвердевание - это одновременная и равномерная кристаллизация расплава во всех частях отливки, что обеспечивается определенными условиями. Приближенно эти условия можно считать выполненными, если толщина отливки во всех ее точках неизменна или изменяется равномерно. Наилучшим образом соблюдаются эти условия при возможно меньшей толщине стенки.

При направленном затвердевании кристаллизация отливки происходит последовательно в направлении противоположном вектору отвода тепла и источнику питания жидким сплавом. При направленном затвердевании отливка получается наиболее плотной, без концентрированных раковин, которые выводятся в прибыль.

Направленное затвердевание можно осуществить несколькими путями:

а) охлаждением нижней части формы или нагревом прибыли;

б) конструкцией отливки, имеющей с постепенно увеличивающейся толщиной в направлении к прибыли;

в) подводом расплавленного металла под прибыль.

4. Поглощение газов в значительной мере зависит от вида и свойств газа, природы растворителя, температуры и давления. Если воде с повышением температуры растворимость газов уменьшается, то в жидких металлах и сплавах растворимость газов может увеличиваете с увеличением температуры.

Для уменьшения объема растворенных газов, газовых раковин и пористости применяют следующие методы:

а) дегазации исходных (шихтовых) материалов;

б) дегазацию жидкого металла перед заливкой в форму;

в) предупреждения выделения газов из раствора в процессе кристаллизации металла в форме.

5. Склонность к образованию неметаллических включений.

В затвердевшем сплаве окислы, нитриды, более тугоплавкие соединения и др., являются телами, нарушающими сплошность и единообразие его структуры. Неметаллические включения неблагоприятно оказываются на физико-химических свойствах,

6. Ликвация.

При охлаждении сплава в форме вследствие неодинаковой удельной массы, неодинаковой температуры кристаллизации составляющих сплава в отдельных участках возникает химическая неоднородность - ликвация. Ликвация зависит от скорости охлаждения большая скорость охлаждения способствует получению более однородного по химическому составу отливки, к получению отливки с лучшими механическими свойствами.

Литейные сплавы и их характеристика.

Чугун - многокомпонентный сплав железа с углеродом и другими компонентами (углерода 2-4%).На характер кристаллизации чугуна влияют содержание элементов (C, Si, Mn, P, S ) и скорости охлаждения. При этом структура и свойства чугунов различны:

если весь углерод кристаллизуется в виде графита, а металлическая основа в виде феррита, то получают серый чугун,

если же весь углерод кристаллизуется в составе цементита Fe3C , то получают белый чугун.

В половинчатом чугуне находятся одновременно графит и свободный цементит. Получающиеся при кристаллизации структуры можно существенно изменить последующей термообработкой.

Чугун широко применяют благодаря хорошим технологическим свойствам (хорошая жидкотекучесть и обрабатываемость резанием) и малой относительной стоимости.

Стали - железоуглеродистые сплавы, содержащие до 2% С. Кроме углерода в сталях содержатся Mn, Si, S, P, N, H, O и другие элементы. Стали с добавкой Cr, Ni, Mo, V, W имеют особые физические, физико-химические свойства или повышенную прочность.

В производстве применяют три группы литейных сталей: конструкционные, инструментальные и легированные. Литейные свойства сталей ниже литейных свойств чугунов, легированные стали имеют плохие литейные свойства. При усадке получают раковины и пористость.

Плотные (без пор и раковин) отливки получают при правильной их конструкции, то есть когда есть прибыль или обеспечено направленное затвердевание. Усадка в твердом состоянии может вызвать горячие или холодные трещины, коробление отливок, высокие внутренние напряжения и изменение литейных размеров.

Алюминиевые сплавы – сплавы, основной составной частью которых является алюминий. В качестве дополнительных компонентов, создающих те или иные специфичные технологические свойства, применяют кремний, медь, магний, титан, натрий, марганец.

Добавка кремния улучшает литейные свойства, добавка меди улучшает обрабатываемость резанием, магний увеличивает коррозионную стойкость и прочность.

Магниевые сплавы - сплавы на магниевой основе и в зависимости от требуемых свойств содержащие добавки: марганец, алюминий, цинк, цирконий и другие редкоземельные элементы. Литейные свойства удовлетворительные.

Медные сплавы - сплавы не медной основе с добавками различных элементов; различают две основные группы медных сплавов:

латуни- сплав меди с цинком;

бронзы - сплав меди с другими (кроме цинка) элементами.

Литейные свойства - удовлетворительные.

Титановые сплавы - сплавы на основе титана, содержащие добавки, которые создают особые свойства. Литье этих сплавов связано с большими технологическими трудностями (из-за активного взаимодействия расплава с материалами формы).

Наши рекомендации