Импульс системы материальных точек
Центр масс (англ. center-of-mass; центр ине́рции, барице́нтр) в механике — это геометрическая точка, характеризующая движение тела или системы частиц как целого. Положение центра масс (центра инерции) в классической механике определяется следующим образом:
где
— радиус-вектор центра масс,
— радиус-вектор i-й точки системы,
mi — масса i-й точки.
Для случая непрерывного распределения масс:
где: M — суммарная масса системы, V — объём, ρ — плотность. Центр масс, таким образом, характерезует распределение массы по телу или системе частиц.Понятие центра масс широко используется в физике.Движение твёрдого тела можно рассматривать как суперпозицию поступательного движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения. Центром масс наз. материальная точка которую можно получить из математических выводов. rc =Σimiri/Σimi xc = Σmixi/Σmi yc =Σmiyi/Σmi zc = Σmizi/zmi 1.Ц.м.твердого тела при движении при движении ведет себя таки образом как будто бы равнодействующая всех внешних сил приложены к этой точки. 2.ц.м ведет себя таким образом как будто вся масса твердого тела сосредоточена в этой точке. центр масс системы (ц. инерции)- точка, в которой может считаться масса всего тела при поступательном движении данного тела. Это точка С, радиус-вектор rc которой равен rc=m-1åmi×ri . Центр масс системы движется как мат.т., в которой сосредоточена масса всей системы и на которую действует сила, равная главному вектору внешних сил, действующих на всю систему.
9.Момент импульса системы материальных…
Момент импульса - мера механического движения тела или системы тел относительно какой-либо точки (центра) или оси. Момент импульса равен векторному импульса тела на плечо этого импульса относительно оси. Момент силы, величина, характеризующая вращательный эффект силы при действии её на твёрдое тело; является одним из основных понятий механики. Различают М. с. относительно центра (точки) и относительно оси. М. с. относительно центра О величина векторная. Его модуль Mo = Fh, где F — модуль силы, a h — плечо, т. е. длина перпендикуляра, опущенного из О на линию действия силы (см. рис.); направлен вектор Mo перпендикулярно плоскости, проходящей через центр О и силу, в сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки (в правой системе координат). С помощью векторного произведения М. с. выражается равенством Mo = [rF], где r — радиус-вектор, проведённый из О в точку приложения силы. Размерность М. с. — L2MT2, единицы измерения — н×м, дин×см (1 н×м = 107 дин×см) или кгс×м. М. с. относительно оси величина алгебраическая, равная проекции на эту ось М. с. относительно любой точки О оси или же численной величине момента проекции Рху силы F на плоскость ху, перпендикулярную оси z, взятого относительно точки пересечения оси с плоскостью. Т. е. Mz = Mo cos g = ± Fxy h1.
Знак плюс в последнем выражении берётся, когда поворот силы F с положительного конца оси z виден против хода часовой стрелки (тоже в правой системе). М. с. относительно осей x, y, z могут также вычисляться по формулам:
Mx = yFz — zFy, My = zFx — xFz, Mz = xFy — yFx,
где Fx, Fy, Fz — проекции силы F на оси; х, у, z — координаты точки А приложения силы.
13.Законы сохранения механической системы...Совокупность тел, выделенных для рассмотрения, называется механической системой. Тела системы могут взаимодействовать как между собой, так и с телами, не входящими в систему. В соответствии с этим силы, действующие на тела системы, подразделяются на внутренние и внешние. Внутренними называют силы, с которыми тела системы действуют друг на друга, внешними - силы, обусловленные воздействием тел, не принадлежащих системе. Система, в которой внешние силы отсутствуют, называется замкнутой. Для замкнутых систем остаются постоянными (сохраняются) три физические величины: энергия, импульс и момент импульса. Соответственно имеются три закона сохранения: закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса. Эти законы тесно связаны со свойствами времени и пространства.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика). Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем. Закон сохранения момента импульса есть проявление изотропности пространства. Закон сохранения механической энергии — механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть. Ек1+Еп1=Ек2+Еп2 Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт.
15.*Законы сохранения при столкновениях. *Упругие и неупругие столкновения. *Экспериментальная проверка законов сохранения на примере удара шаров.
Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения.
Абсолютно неупругий удар- такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.
Абсолютно упругий удар- столкновение, при котором сохраняется механическая энергия системы тел.