Проблема экономизации спортивной техники
Если у разных спортсменов при выполнении одного и того же двигательного задания измерить энергозапрос, то его величины могут оказаться резко различными: одна и та же работа будет для разных спортсменов связана с неодинаковым расходом энергии. Так, например, при плавании с одинаковой скоростью на дистанции 150 м (время плавания —146 с) величина кислородного запроса у пловцов-третьеразрядников составляла в среднем 5486 мл/мин, а у мастеров спорта лишь 2726 мл/мин, т. е. в 2 раза (!) меньше (Фам Чонг Тхань). При плавании с той же скоростью третьеразрядники затрачивают в 2 раза больше энергии, чем мастера.
Экономичность работы нередко оценивают с помощью коэффициентов, связывающих величины выполненной работы с величинами затраченной при этом энергии. Наиболее часто применяют три таких коэффициента.
1. Валовый коэффициент (брутто-коэффициент) экономичности работы:
K1=A/E
где А — выполненная механическая работа (в джоулях), Е— затраченная энергия (в джоулях).
2. Нетто-коэффициент; в данном случае из величины энерготрат при выполнении работы вычитают величину энерготрат в состоянии покоя (в условиях основного обмена или в рабочей позе):
K2=A/(E-En)
где А — величины работы (в джоулях), En —энерготраты (в джоулях).
3 Дельта коэффициент сравнивают величины выполненной работы в двух двигательных заданиях разной интенсивности
K3=(A2-A1)/(E2-E2)
где A 1 и А 2 величины работы в джоулях, Е1 и Е2 энерготраты в джоулях
Например, определяются энерготраты при педалировании на велоэргометре с мощностью 50 и 250 вт в течение 100 с. Выполненная работа равна 5 тыс. джоулей (А 1 ) и 25 тыс. джоулей (А 2 ).
Все эти коэффициенты введены по аналогии с известным по школьному Курсу физики коэффициентом полезного действия (к.п.д.), a K t формально равен ему. Однако отношение к введенным коэффициентам Ki , К 2 и К з, их использование и трактовка отличаются от того, что имеет место в физике и в технике.
Таким образом, использование указанных коэффициентов, во-первых, позволяет анализировать лишь внешние результаты двигательных заданий (но не процессы, лежащие в их основе); во-вторых, приемлемо лишь при анализе двигательных заданий сходного типа. Можно, например, сравнивать величины этих коэффициентов в одном и том же движении (например, в беге), и нельзя — в движениях далеких друг от друга (например, в плавании и прыжках в воду).
Биомеханические основы экономизации спортивной техники. Особенности спортивной техники в упражнениях, требующих большой выносливости
С биомеханической точки зрения есть два различных пути повышения экономичности движении:
1) снижение величин энерготрат в каждом цикле (например, в каждом шаге);
2) рекуперация энергии, т. е. преобразование кинетической энергии в потенциальную и ее обратный переход в кинетическую.
Что касается первого пути, то он реализуется несколькими основными способами:
а) устранением ненужных движений (например, в вертикальном направлении; ведь каждая работа по подъему тела требует затрат энергии и оправданна лишь постольку, поскольку она абсолютно необходима для продвижения вперед);
б) устранением ненужных сокращений мышц. У квалифицированных спортсменов суммарное время активности мышц меньше, время расслабленного состояния больше, чем у новичков. Это достигается за счет так называемой концентрации активности мышц. Внешне это выражается в легкости и свободе движений;
в) уменьшением внешнего сопротивления (например, уменьшением сопротивления воды в плавании за счет выбора более обтекаемого положения тела);
г) уменьшением внутрицикловых колебаний скорости. Повышение скорости (после ее падения) требует затрат энергии. По возможности такие колебания надо уменьшать, хотя в некоторых видах спорта (плавание брассом, академическая гребля) они поневоле остаются значительными;
д) выбором оптимального соотношения между силой действия и скоростью рабочих движений. В некоторых видах спорта (велосипедном, гребле) можно сохранить одну и ту же скорость передвижения при разном соотношении силы действия и скорости отдельных движений (например, в гребле за счет изменения площади лопасти весла). Аналогично в лабораторных условиях можно поддерживать ту же мощность на велоэргометре при разном соотношении силы действия и скорости педалирования. Для каждой заданной скорости передвижения или мощности существует свое оптимальное соотношение между силой действия и скоростью рабочих движений. Наиболее просто вопрос сохранения его решается в велосипедном спорте, где величина сопротивления задается сменой передачи (можно сделать так, что за один рабочий цикл велосипед будет проезжать разные расстояния). На разных передачах велосипедист будет ехать при одной и той же величине энерготрат с разной скоростью (рис.58);
е) выбором оптимального соотношения между длиной и частотой шагов. На рис. 59 показано, как изменяется расход энергии при ходьбе с одной и той же скоростью, но при разном соотношении длины и частоты шагов. На абсциссе этого графика — число шагов в минуту, на ординате—длина шага в сантиметрах. Пунктирные дугообразные линии, идущие из верхнего левого угла в правый нижний угол, соответствуют определенным скоростям, значения которых нанесены сверху. Остальные линии соединяют точки одинаковой затраты энергии. На линии, обозначенной цифрой 40 и
пересекающей абсциссу при числе шагов 70 и 120 в минуту, лежат все комбинации длины и частоты шага, при которых затраты энергии на 1 м пути (константа пути) составляют 40 калорий. Крестиком обозначена точка наименьшей траты энергий —35 калорий на 1 м пути. Номограмма дает для каждой скорости оптимальную (с точки зрения затрат энергии) комбинацию длины и частоты шагов. Этот оптимум обозначен толстой линией, идущей из левого нижнего угла в правый верхний угол. Если длина и частота шагов соответствуют этой линии, затраты энергии на 1 м пути минимальны (для данной скорости передвижения).
Подобного рода зависимости существуют и в других циклических локомоциях. Интересно, что в ходьбе оптимальная (по затратам энергии) длина и частота шагов подбирается человеком без специального обучения. В других циклических локомоциях нередко можно наблюдать довольно значительные отклонения от наиболее выгодного соотношения этих характеристик. Подобные отклонения должны устраняться тренером.
Рекуперация 4 энергии в движениях человека осуществляется двумя способами.
Во-первых, кинетическая энергия движения может переходить в потенциальную энергию гравитации (сил тяжести). Например, в обычной ходьбе наивысшему положению ЦМ тела (максимуму потенциальной энергии) соответствует минимум кинетической энергии, и наоборот, кинетическая энергия тела самая большая, когда его ОЦМ находится в самом низком положении. Образно можно себе представить, что ОЦМ движется как шарик, катящийся по неровной поверхности:, на подъемах кинетическая энергия переходит в потенциальную, а на спусках — наоборот. Благодаря этому полная механическая энергия тела (т. е. сумма его кинетической и потенциальной энергии) сохраняется. Разумеется, это
сохранение не стопроцентное — значительная часть энергии рассеивается. Но все же благодаря описанному явлению экономичность ходьбы значительно повышается.
Во-вторых, кинетическая энергия движения превращается в потенциальную энергию упругой деформации мышц, а накопленная потенциальная энергия частично снова превращается в работу — идет на сообщение скорости телу и его подъем. В модельных опытах (прыжки на месте) показано (А. С. Аруин), что рациональное использование упругих сил мышц может повысить экономичность работы более чем в 2 раза.
Повышение экономичности спортивной техники — основное направление ее совершенствования в видах спорта, требующих большой выносливости. Определенное значение имеют и другие факторы, в частности предупреждение локального утомления отдельных мышечных групп, что может наблюдаться, если нагрузка на какую-либо мышечную группу становится особенно велика
В циклических локомоциях для характеристики экономичности техники обычно используют не указанные выше коэффициенты, а так называемую константу пути — величину энерготрат, приходящуюся на 1 метр пути.
При сравнении разных локомоций значения константы пути и коэффициентов экономичности работы могут не совпадать, поскольку в разных локомоциях для того, чтобы преодолеть одно и то же расстояние, надо выполнить разную механическую работу. Например, при ходьбе по сравнению с ездой на велосипеде коэффициенты К1 и К2больше (т. е. работа экономичнее), но в то же время и сама механическая работа больше (главным образом из-за подъема общего центра тяжести в каждом шаге). При езде на велосипеде К х и К 2 меньше, но меньше и механическая работа. В результате затраты энергии на метр пути (константа пути) при езде на велосипеде гораздо меньше, чем при ходьбе.
Экономичность техники зависит от двух групп факторов: 1) физиологических и биохимических (в частности от того, аэробными или анаэробными процессами обеспечивается поставка энергии) и 2) биомеханических.
30. Даже при стремлении к наивысшей механической производительности (например, на спринтерских и средних дистанциях) не следует забывать об экономичности движений. Но в этом случае экономичность играет роль второго по значимости критерия оптимальности. Например, при любой, сколь угодно высокой скорости передвижения существует оптимальное по экономичности сочетание длины и частоты шагов, которое зависит от скорости. Оптимизируя технику двигательных действий в каждом шаге, можно сэкономить энергию и использовать ее для того, чтобы еще более повысить скорость.
В заключение рассказа о биомеханических основах выносливости два замечания.
Первое замечание. Все сказанное о способах повышения выносливости относится как к циклической, так и к ациклической двигательной деятельности. Примеры, относящиеся к бегу и другим циклическим локомоциям, приведены лишь потому, что они просты и понятны каждому.
Задание для самоконтроля и закрепления знаний
Сформулируйте практические советы человеку, занимающемуся вашим любимым видом спорта, в соответствии с приведенными выше пятью группами рекомендаций о том, как повысить выносливость.
Второе замечание. К биомеханическим способам повышения выносливости необходимо приобщать человека еще в школьном возрасте.
Ибо исправить технику двигательных действий гораздо труднее, чем сформировать ее с самого начала правильно. И не случайно столь распространены и живучи неправильная осанка, неестественно замедленная ходьба, а у спортсменов— непонимание необходимости оптимизировать энергозатраты, предрассудок о целесообразности равномерной раскладки скорости независимо от длины дистанции и т. п. Все эти несовершенства двигательной культуры могут быть исправлены только на основе знания и повседневного использования биомеханических закономерностей.
Вопрос для самоконтроля знаний
Существуют два представления о выносливости. Их суть ясна из рис. 27 и 50. В чем основное различие между ними?