Следовательно, работа силы потенциального поля не зависит от траектории движения точки, а определяется лишь значениями силовой функции в начальном и конечном положениях точки
Лекция 2. Работа. Мощность. Теорема об изменении кинетической энергии точки.
В данной лекции рассматриваются следующие вопросы:
1. Работа силы.
2. Консервативные силы.
2. Мощность.
3. Примеры вычисления работы.
4. Потенциальная энергия
5. Кинетическая энергия
6. Теорема об изменении кинетической энергии точки.
7. Теорема моментов.
Изучение данных вопросов необходимо для динамики движения центра масс механической системы, динамики вращательного движения твердого тела, кинетического момента механической системы, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».
Работа силы. Мощность.
Для характеристики действия, оказываемого силой на тело при некотором его перемещении, вводится понятие о работе силы.
Рис.1
При этом работа характеризует то действие силы, которым определяется изменение модуляскорости движущейся точки.
Введём сначала понятие об элементарной работе силы на бесконечно малом перемещении ds. Элементарной работой силы (рис.1) называется скалярная величина:
,
где - проекция силы на касательную к траектории, направленную в сторону перемещения точки, а ds- бесконечно малое перемещение точки, направленное вдоль этой касательной.
Данное определение соответствует понятию о работе, как о характеристике того действия силы, которое приводит к изменению модуля скорости точки. В самом деле, если разложить силу на составляющие и , то изменять модуль скорости точки будет только составляющая , сообщающая точке касательное ускорение. Составляющая же или изменяет направление вектора скорости v (сообщает точке нормальное ускорение), или, при несвободном движение изменяет давление на связь. На модуль скорости составляющая влиять не будет, т.е., как говорят, сила «не будет производить работу».
Замечая, что , получаем:
. (1)
Таким образом, элементарная работа силы равна проекции силы на направление перемещения точки, умноженной на элементарное перемещение ds или элементарная работа силы равна произведению модуля силы на элементарное перемещение ds и на косинус угла между направлением силы и направлением перемещения.
Если угол острый, то работа положительна. В частности, при элементарная работа dA=Fds.
Если угол тупой, то работа отрицательна. В частности, при элементарная работа dA=-Fds.
Если угол , т.е. если сила направлена перпендикулярно перемещению, то элементарная работа силы равна нулю.
Положительную силу F (α> 90°) называют движущей, а отрицательную (α> 90°) – силой сопротивления.
Найдем аналитическое выражение элементарной работы. Для этого разложим силу на составляющие по направлениям координатных осей (рис.2; сама сила на чертеже не показана).
Рис.2
Элементарное перемещение слагается из перемещений dx, dy, dz вдоль координатных осей, где x, y, z - координаты точки М. Тогда работу силы на перемещении ds можно вычислить как сумму работ её составляющих на перемещениях dx, dy, dz.
Но на перемещении dx совершает работу только составляющая , причем её работа равна Fxdx. Работа на перемещениях dy и dz вычисляется аналогично.
Окончательно находим: dA=Fxdx+Fydy+Fzdz.
Формула дает аналитическое выражение элементарной работы силы.
Работа силы на любом конечном перемещении М0М1 вычисляется как интегральная сумма соответствующих элементарных работ и будет равна:
Следовательно, работа силы на любом перемещении М0М1 равна взятому вдоль этого перемещения интегралу от элементарной работы. Пределы интеграла соответствуют значениям переменных интегрирования в точках М0 и М1. Графически площадь под всей кривой М0 и М1 и будет искомой работой.
Рис.3
Если величина постоянна ( , то и обозначая перемещение М0М1 через получим: .
Такой случай может иметь место, когда действующая сила постоянна по модулю и направлению (F= const), а точка, к которой приложена сила, движется прямолинейно (рис.3). В этом случае и работа силы .
Единицей измерения работы в системе СИ является джоуль(1 дж= 1 Н∙м). 1 Дж – работа, совершаемая силой 1 Н на 1 м пути.
Консервативные силы.
Силы, действующие на тело, могут быть консервативными и неконсервативными. Сила называется консервативной или потенциальной, если работа, совершаемая этой силой при перемещении материальной точки из одного положения в другое, не зависит от вида траектории (формы пути) и определяется только начальным и конечным положениями тела (рис.3.1): А1В2 = А1С2 = А12.
Рис.3.1
В случае, если тело движется в обратном направлении А12= –А21, т.е. изменение направления движения по траектории на противоположное вызывает изменение знака работы. Следовательно, при движении материальной точки по замкнутой траектории работа консервативной силы равна нулю (например, поднятие и опускание груза):
Консервативными силами являются силы гравитационного взаимодействия, силы упругости, электростатические силы. Силы, не удовлетворяющие условию (1), называются неконсервативными. К неконсервативным силам относят силы трения и сопротивления. Поле, в котором действуют консервативные силы, называется потенциальным.
Мощность.
Мощностью называется величина, определяющая работу, совершаемую силой в единицу времени. Если работа совершается равномерно, то мощность
где t - время, в течение которого произведена работа A. В общем случае
Следовательно, мощность равна произведению касательной составляющей силы на скорость движения.
Единицей измерения мощности в системе СИ является ватт(1 вт=1 дж/сек). В технике за единицу мощности часто принимается 1 лошадиная сила, равная 75 кГм/сек или 736 вт.
Работу, произведенную машиной, можно измерять произведением ее мощности на время работы. Отсюда возникла употребительная в технике единица измерения работы киловатт-час (1 квт-ч = 3,6∙106 дж ≈367100 кГм).
Из равенства видно, что у двигателя, имеющего данную мощность W, сила тяги будет тем больше, чем меньше скорость движения V. Поэтому, например, на подъеме или на плохом участке дороги у автомобиля включают низшие передачи, позволяющие при полной мощности двигаться с меньшей скоростью и развивать большую силу тяги.
Примеры вычисления работы.
Рассмотренные ниже примеры дают результаты, которыми можно непосредственно пользоваться при решении задач.
1) Работа силы тяжести. Пусть точка М, на которую действует сила тяжести , перемещается из положения М0 (x0, у0, z0) в положение M1 (х1, у1, z1). Выберем оси координат так, чтобы ось Oz была направлена вертикально вверх (рис.4).
Рис.4
Тогда Рx=0, Рy=0, Pz= -Р. Подставляя эти значения и учитывая переменную интегрирования z:
Если точка M0 выше М1, то , где h-величина вертикального перемещения точки;
Если же точка M0 ниже точки M1то .
Окончательно получаем: .
Следовательно, работа силы тяжести равна взятому со знаком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной, и отрицательна, если начальная точка ниже конечной. Из полученного результата следует, что работа силы тяжести не зависит от вида той траектории, по которой перемещается точка ее приложения.
Силы, обладающие таким свойством, называются потенциальными.
2) Работа силы упругости. Рассмотрим груз М, лежащий на горизонтальной плоскости и прикрепленный к свободному концу некоторой пружины (рис.5,а). Отметим на плоскости точкой О положение, занимаемое концом пружины, когда она не напряжена ( - длина ненапряженной пружины), и примем эту точку за начало координат. Если теперь оттянуть груз от равновесного положения О, удлинив пружину до величины l, то на груз будет действовать сила упругости пружины F, направленная к точке О.
Рис.5
По закону Гука величина этой силы пропорциональна удлинению пружины . Так как в нашем случае , то по модулю
Коэффициент сназывается коэффициентом жесткости пружины. В технике обычно измеряют величину с в H/см, полагая коэффициент с численно равным силе, которую надо приложить к пружине, чтобы растянуть ее на 1 см.
Найдем работу, совершаемую силой упругости при перемещении груза из положения в положение Так как в данном случае Fx=-F=-cx, Fy=Fz=0, то получим:
(Этот же результат можно получить по графику зависимости F от х (рис.20, б), вычисляя площадь заштрихованной на чертеже трапеции и учитывая знак работы.) В полученной формуле представляет собою начальное удлинение пружины , а конечное удлинение пружины . Следовательно,
т.е. работа силы упругости равна половине произведения коэффициента жесткости на разность квадратов начального и конечного удлинений (или сжатий) пружины.
Работа будет положительной, когда , т. е. когда конец пружины перемещается к равновесному положению, и отрицательной, когда , т.е. конец пружины удаляется от равновесия положения. Можно доказать, что формула остается справедливой и в случае, когда перемещение точки М не является прямолинейным.
Таким образом, оказывается, что работа силы F зависит только от значений и и не зависит от вида траектории точки М. Следовательно, сила упругости также является потенциальной.
Рис.6
3) Работа силы трения. Рассмотрим точку, движущуюся по какой-нибудь шероховатой поверхности (рис.6) или кривой. Действующая на точку сила трения равна по модулю fN, где f - коэффициент трения, а -нормальная реакция поверхности. Направлена сила трения противоположно перемещению точки. Следовательно, Fтр=-fN и по формуле
Если величина силы трения постоянна, то , где s-длина дуги кривой М0М1 по которой перемещается точка.
Таким образом, работа силы трения при скольжении всегда отрицательна. Величина этой работы зависит от длины дуги М0М1 . Следовательно, сила трения является силой непотенциальной.
4) Работа силы, приложенной к телу, вращающемуся вокруг неподвижной оси.
В этом случае (рис.7) точка приложения силы движется по окружности радиуса r. Элементарная работа, по (1), , где .
Рис.7
Поэтому .
Но .
Это нетрудно установить, разложив силу на три составляющие (рис. 7). (Моменты сил и равны нулю). Значит,
(2)
В частности, если момент силы относительно оси , работа силы при повороте тела на угол равна
. (3)
Знак работы определяется знаками момента силы и угла поворота. Если они одинаковы, работа положительная.
Из формулы (3) следует и правило определения работы пары сил. Если пара с моментом m расположена в плоскости перпендикулярной оси вращения тела, то ее работа при повороте тела на угол
. (4)
Если же пара сил действует в плоскости не перпендикулярной оси вращения, то ее надо заменить двумя парами. Одну расположить в плоскости перпендикулярной оси, другую – в плоскости параллельной оси. Моменты их определяются разложением вектора момента по соответствующим направлениям: . Конечно работу будет совершать только первая пара с моментом , где – угол между вектором и осью вращения z,
. (5)
Энергия.
Мерой поступательного движения является импульс тела, но эта характеристика не универсальная. Универсальной количественной мерой движения и взаимодействия всех видов материи является энергия. Формы энергии: механическая, тепловая, электрическая, ядерная, внутренняя и др. Энергия из одной формы может переходить в другую. Энергия механической системы количественно характеризует ее с точки зрения возможных количественных и качественных превращений движения. Эти превращения обусловлены взаимодействием тел системы между собой и с внешними телами. Таким образом, движение и энергия неразрывно связаны между собой, а т.к. движение является неотъемлемой частью материи, то всякое тело обладает какой-либо энергией.
Кинетической энергиейтела называют энергию, являющуюся мерой его механического движения и определяемую работой, которую надо совершить, чтобы вызвать это движение.
Если под действием силы тело из состояния покоя приходит в движение со скоростью , то будет совершаться работа, и энергия тела возрастает на величину затраченной работы:
где - перемещение; dA – элементарная работа.
С учетом скалярной записи второго закона Ньютона:
Получим
А так как совершаемая работа равна приращению энергии, то
Полная энергия находится путем интегрирования, при изменении скорости от 0 до некоторого значения V:
Кинетическая энергия всегда положительна. Кинетическая энергия системы материальных точек равна алгебраической сумме кинетических энергий всех материальных точек системы.
Кинетическая энергия системы есть функция состояния ее движения.
Кинетическая энергия зависит от выбора системы отсчета, т.к. в различных инерциальных системах отсчета скорость неодинакова.
Потенциальная энергия – часть общей механической энергии системы, определяемая взаимным расположением тел, действующих друг на друга.
Часть пространства, в которой на помещенную туда материальную точку действует сила, зависящая от места положения точки, называется силовым полем.
Причем, эта сила определяется с помощью силовой функции u = u(x, y, z). Если она не зависит от времени, то такое поле называется стационарным. Если во всех точках она одинакова, то поле – однородное.
Если же проекции силы на декартовы оси есть частные производные от силовой функции по соответствующим координатам
то такое поле называется потенциальным.
Если работа зависит от траектории, то силы называются диссипативными (сила трения).
Вычислим работу силы потенциального поля при перемещении точки из положения М1 в положение М2. (рис. 8).
Рис.8
Элементарная работа,
Это есть полный дифференциал силовой функции.
Работа на конечном перемещении
где u2 и u1 – значения силовой функции в точках М2 и М1.
Следовательно, работа силы потенциального поля не зависит от траектории движения точки, а определяется лишь значениями силовой функции в начальном и конечном положениях точки.
Естественно, если точка вернется в начальное положение, работа силы будет равна нулю. Работа окажется равной нулю и при переходе в другую точку М3, если там значение силовой функции будет такое же, как и в начальном положении.
Нетрудно догадаться, что точки с одинаковыми значениями силовой функции будут образовывать целую поверхность. И что силовое поле – это слоеное пространство, состоящее из таких поверхностей (рис. 8). Эти поверхности называются поверхностями уровня или эквипотенциальными поверхностями. Уравнения их: u(x, y, z)=C (C – постоянная, равная значению u в точках этой поверхности). А силовую функцию называют, соответственно, потенциалом поля.
Конечно, эквипотенциальные поверхности не пересекаются. Иначе существовали бы точки поля с неопределенным потенциалом.
Поскольку, при перемещении точки по эквипотенциальной поверхности работа силы равна нулю, то вектор силы перпендикулярен поверхности.
Выберем среди этих поверхностей какую-нибудь одну и назовем ее нулевой поверхностью (положим у нее u=u0).
Работа, которую совершит сила при переходе точки из определенного места М на нулевую поверхность, называют потенциальной энергией точки в этом определенном месте М:
Если тело находится в потенциальном поле сил, то оно будет обладать потенциальной энергией. Потенциальную энергию тела, связанного с нулевым уровнем системы отсчета, принимают нулевой, а энергию других положений отсчитывают относительно нулевого уровня.
По (8) силовая функция . Поэтому проекции силы на декартовы оси, по (6), так как ,
и вектор силы .
Рассмотрим несколько потенциальных полей.
1) Поле силы тяжести.
Вблизи поверхности Земли сила тяжести во всех точках одинакова , равна весу тела. Значит, это силовое поле однородное. Так как при перемещении точки в горизонтальной плоскости работа силы равна нулю, то эквипотенциальными поверхностями будут горизонтальные плоскости (рис. 9), а уравнения их: u = z = C.
Рис.9
Если нулевой поверхностью назначить плоскость xOy, то потенциальная энергия точки в положении М будет равна работе силы тяжести:
WП=A=Ph=mgh.
это энергия тела, поднятого над Землей на высоту h.
Так как начало отсчета выбирается произвольно, то WП может в общем случае принимать и отрицательные значения (например, WП на дне шахты).
2) Поле упругой силы.
При деформации упругого тела, например пружины, появляется сила. То есть около этого тела возникает силовое поле, силы которого пропорциональны деформации тела и направлены в сторону недеформированного состояния. У пружины – в точку М0, где находится конец недеформированной пружины (рис. 10).
Рис.10
Если перемещать конец пружины так, чтобы длина ее не изменялась, то работа упругой силы будет равна нулю. Значит эквипотенциальными поверхностями являются сферические поверхности с центром в точке О.
Назначим нулевой поверхностью сферу, проходящую через точку М0, через конец недеформированной пружины. Тогда потенциальная энергия пружины в положении М: WП=A=0,5kx2.
При таком выборе нулевой поверхности потенциальная энергия всегда будет положительной (WП>0), и в растянутом, и в сжатом состоянии.
Полная механическая энергия системы равна энергии механического движения и энергия взаимодействия:
Полная механическая энергия тела при его перемещении вдоль любой траектории в потенциальном поле остается постоянной.
Пример 1. Рассмотрим свободное падение камня массой m, брошенного в поле гравитации Земли из точки 1 в точку 2 (рис. 11).
Рис.11
Элементарная работа, совершаемая силой тяжести при перемещении камня, равна:
Полная работа на участке 1–2 находится как
где Fгр = mg – сила тяжести; тогда получаем:
Из последнего выражения видно, что работа определяется только положением начальной и конечной точек траектории тела.
Пример 2. Найдем потенциальную энергию упруго деформированного тела (пружины). Известно, что сила упругости пропорциональна деформации x:
где k – коэффициент упругости; x – значение деформации; знак (–) указывает, что Fупр направлена в сторону, противоположную деформации.
Для преодоления силы упругости необходимо приложить силу:
Элементарная работа – работа, совершаемая при бесконечно малой деформации:
Полная работа найдется как
Работа в данном примере идет на увеличение потенциальной энергии пружины. Если при x = 0 Won = 0, то с = 0. Потенциальная энергия упругодеформированного тела равна
Пример 3. Материальная точка массой m движется по оси Ох в потенциальном силовом поле с энергией, зависящей от координаты x по закону: Wр= -αx4, где α - положительная постоянная. Найти зависимость ускорения точки от координаты x.
Решение. Используя связь между силой и потенциальной энергией:
найдем зависимость силы от координаты x:
По второму закону Ньютона получим выражение для ускорения:
Если аналитически или графически задана зависимость потенциальной энергии от угла поворота при вращательном движении, то, применяя соотношение , можно выразить момент силы, а также найти угловое ускорение
Пример 4.Вагон массой m = 20 т, двигаясь равнозамедленно с начальной скоростью v0= 54 км/ч, под действием силы трения Fmp = 6 кН через некоторое время останавливается. Найти работу A сил трения и расстояние S, которое вагон пройдет до остановки.
Решение.
1) Работа А, совершаемая результирующей силой, может быть определена как мера изменения кинетической энергии материальной точки:
где Wk=mv2/2=0.
Отсюда A=-Wk0;
A=-2,25 МДж
2) Расстояние
Ответ: Работа сил трения равна -2,25 МДж, расстояние которое вагон пройдет до остановки 375 м.
Пример 5. На рисунке изображена зависимость проекции Fx силы, действующей на материальную точку, от координаты х. Определить работу, совершенную при перемещении точки на расстояние 5 м.
Рис.12
Решение. Согласно условию сила зависит от координаты x. Работа переменной силы на участке от x1 до x2 равна
Геометрически интеграл можно интерпретировать как площадь фигуры, ограниченной соответствующим участком графика, отрезком оси x и перпендикулярами, опущенными из конечных точек графика на ось абсцисс. На первом участке графика проекция силы Fx отрицательна и работа тоже отрицательна. Численно она равна площади треугольника. На втором и третьем участках Fx >0, работы на этих участках положительны и вычисляются как соответствующие площади прямоугольника и треугольника. В результате имеем:
А = -(1∙2)/2 + 1∙2 + (1∙1)∙2 = 1,5 Дж.
Если задана зависимость момента силы от угловой координаты φ, то расчет работы производится по аналогичной формуле либо аналитически, либо графически.
Пример 6.К ободу диска массой m = 5 кг приложена касательная сила F = 19,6 Н. Какую кинетическую энергию Wк будет иметь диск через время t = 5 c после начала действия силы?
Решение.
1) - кинетическая энергия диска;
2) ω=εt - угловая скорость;
3)
4) Момент инерции для диска ;
6) Подставив данные, получим:
Ответ:Кинетическая энергия, через 5 с. после начала действия силы будет равна 1,9 кДж.