Рекристаллизация сплавов, влияние на структуру и свойства. Температура рекристаллизации по А.А. Бочвару

Рекристаллизация – возвращение свойств в первоначальное состояние в процессе нагрева наклёпанного металла. Процессы: уменьшение количества дефектов, рост зерна (до исходного). А.А. Бочвар показал: Tр = a·TплК (в Кельвинах). Чем выше Tпл, тем выше Tр. Вольфрам, молибден – самые тугоплавкие Me. Если чистый Me - a » 0,2, механические смеси - a » 0,4, твёрдые растворы - a » 0,6, химические соединения - a » 0,8.

19. Диффузионные и бездиффузионные процессы в металлических сплавах, влияние на свойства.

Бездиффузионные характеризуются перемещением атомов в пределах элементарной ячейки крист. решётки, высокой скоростью. Диффузионные превращения характеризуются перемещением атомов на большие расстояния. Они ускоряются с повышением температуры. К таким процессам относят частичный расплав твёрдого раствора α1 → α2 +β.

20. Полиморфные превращения в сплавах. Влияние превращений на структуру и свойства.

Полиморфизм – свойство металла изменять свою кристаллическую решётку под влиянием внешних факторов (температура, давление). Feα Û Feγ. 42 металла имеют полиморфные превращения. Железо, титан, марганец, графит, алмаз, олово. Свойство используется при термической обработке.

Процесс разупрочнения металлов и сплавов происходит на стадии возврата и рекристаллизации, оказывает влияние на формирование структуры и свойств как в процессе высокотемпературной пластической деформации (в том числе и при ползучести), так и в результате отжига после холодной пластической деформации. Структура деформированного материала зависит от таких факторов как схема и условия деформации, ее степень, температура и скорость, кристаллическая структура, кристаллографическая ориентировка и химический состав материала, а также наличие нерастворимых примесей.

Основными параметрами первичной рекристаллизации являются температура начала (t H po C), скорость процесса (G см/сек) и эффективная энергия активизации процесса (Qэфф. ккал/г.град). Движущей силой первичной рекристаллизации является внутренняя объемная энергия, накопленная в процессе пластической деформации. С увеличением степени пластической деформации снижается температура начала рекристаллизации и увеличивается скорость процесса. В результате образуется мелкое зерно. Существенное влияние на рекристаллизацию оказывают нерастворимые примеси и легированные добавки, которые уменьшают скорость процесса и повышают (tНР). Скорость деформации также влияет на исходную структуру. С увеличением скорости увеличивается плотность дислокаций и степень упрочнения, при этом увеличиается скрытая (латентная) энергия, что ведет к увеличению скорости рекристаллизации и снижению (tНР).

В зависимости от степени пластической деформации процесс разупрочнения происходит рзличными механизмами. При небольших степенях деформации в металлах с высокой энергией дефекта упаковки (Э.Д.У), разупрочнение, как правило, происходит на стадии возврата (полигонизации). В металлах с низкой ЭДУ заметное разупрочнение наступает лишь с началом рекристаллизации. При больших степенях пластической деформации этот эффект менее выражен и разупрочнение в основном происходит на стадии рекристаллизации.

Таким образом, при выборе материалов для деталей машин, испытывающих различные нагрузки при различных, в том числе высоких температурах, необходимо учитывать, по возможности, факторы, оказывающие влияние на разупрочняющие процессы (полигонизация, рекристаллизация) с целью получения структуры и свойств материалов с высокими механическими и эксплуатационными свойствами.

1. Превращение переохлажденного аустенита ( распад аустенита)

При охлаждении стали с содержанием углерода 0,8% ниже А1 происходит растад аустенита с содержанием углерода 0,8% на феррит с содержанием 0% и цементит с с содержанием углерода 6,67%. В виду такой разницы содержание углерода в исходной образующейся фазе процесс распада носит диффузионный характер.

Движещей силой любого процесса является уменьшение свободной энергии системы. При температуре, равной А1 ( 727 0С ) скорость диффузии максимальна. Разность свободных энергий старых и новых фаз

равна 0. Поэтому процесс превращения аустенита в перлит при температуре А1 происходить не будет.

При переохлаждении до температуры 200 0С разность свободных энергий максимальна , а скорость диффузии атомов железа практически равна 0, следовательно при этой температуре скорость превращения также равна 0, т.е. скорость превращения переохлажденного аустенита в перлит определяется 2 факторами: разностью свободных энергий старой и новой фаз и скоростью диффузии. Максимальная скорость превращения достигается предварительным охлаждением аустенита до 500 –5500С.Эту зависимость можно представить в виде диаграммы изотермического превращения аустенита.

Линии начала и конца превращения напоминают букву С и называются С-образные кривые. Эта диаграмма распада переохлажденного аустенита для эвтектоидной стадии. Левее линии начала превращения находится область устойчивого состояния переохлажденного аустенита с минимальной устойчивостью при t=500-5500C. В зависимости от степени переохлаждения на диаграмме выделяют перлитную область (при переохлаждении в интервале А1 (5500С);бейнитную область (в интервале t (550 – М4);и мартенситную область при температуре переохлаждения ниже линии М4.

2. Аустенит*, одна из структурных составляющих железоуглеродистых сплавов, твёрдый раствор углерода (до 2%)и легирующих элементов в железе (см. Железо). А. получил название по имени английского учёного У. Робертса-Остена (W. Roberts-Austen, 1843-1902). Кристаллическая решётка - куб с центрированными гранями. А. немагнитен, плотность его больше, чем других структурных составляющих стали. В углеродистых сталях и чугунах А. устойчив выше 723оC. В процессе охлаждения стали А. превращается в другие структурные составляющие. В железоуглеродистых сплавах, содержащих никель, марганец, хром в значительных количествах, А. может полностью сохраниться после охлаждения до комнатной температуры (например, нержавеющие хромоникелевые стали). В зависимости от состава стали и условий охлаждения А. может сохраниться частично в углеродистых или легированных сталях (т. н. остаточный А.).

Учение о превращениях А. берёт начало с открытий Д. К. Чернова (1868), впервые указавшего на их связь с критическими точками стали. При охлаждении ниже этих точек образуются фазы с иным взаимным расположением атомов в кристаллической решётке и, в некоторых случаях, с измененным химическим составом. Различают три области превращений А. В верхнем районе температур (723-550оС) А. распадается с образованием перлита - эвтектоидной смеси, состоящей из перемежающихся пластин феррита (массовая концентрация углерода 0,02%) и цементита (концентрация углерода 6,7%). Перлитное превращение начинается после некоторой выдержки и при достаточном времени завершается полным распадом А. Ниже определенной температуры (Мн), зависящей от содержания углерода (для стали с 0,8% углерода около 240оC), происходит мартенситное превращение А. (см. Мартенсит). Оно состоит в закономерной перестройке кристаллической решётки, при которой атомы не обмениваются местами. В интервале температур 550оС - Мн происходит промежуточное (бейнитное) превращение А. Это превращение, как и перлитное, начинается после инкубационного периода и может быть подавлено быстрым охлаждением; оно, как и мартенситное, прекращается при постоянной температуре (некоторая часть А. сохраняется непревращённой) и сопровождается образованием характерного рельефа на поверхности шлифа. При промежуточном превращении упорядоченные перемещения металлических атомов сочетаются с диффузионным перераспределением атомов углерода в А. В результате образуется феррито-цементитная смесь, а часто и остаточный А. с измененным по сравнению со средним содержанием углерода. Цементит при промежуточном превращении может выделяться как из А. непосредственно, так и из пересыщенного углеродом феррита (см. Бейнит).

Превращение А. в сплавах с содержанием углерода св. 2%, в связи с наличием первичных образований цементита или графита, вызывает своеобразие получающихся структур (см. Чугун). Представление о кинетике превращений А. дают диаграммы, указывающие долю превратившегося А. в координатах температура - время. На диаграмме превращений легиров. А. четко разделены области перлитного (640-520оC) и промежуточного (480-300оC) превращений и имеется температурная зона высокой устойчивости А. (рис.). При перлитном превращении легированного А. во многих случаях образуется смесь феррита и специальных карбидов.

Рекристаллизация сплавов, влияние на структуру и свойства. Температура рекристаллизации по А.А. Бочвару - student2.ru Рисунок Изотермическое превращение аустенита стали (диаграмма)

Легирующие элементы, за исключением кобальта, увеличивают продолжительность инкубационного периода перлитного превращения.

Закономерности превращений А. используют при разработке легированных сталей различного назначения процессов термической и термомехалической обработки. Диаграммы превращений А. позволяют устанавливать режимы отжига сталей, охлаждения изделий, изотермической закалки и т. д.

Лит.: Курдюмов Г. В., Явления закалки и отпуска стали, М., 1960; Энтин Р. И., Превращения аустенита в стали, М., 1960.

Наши рекомендации