Приборы индукционной системы
Конструкция и принцип действия.Принцип действия индукционных приборов основан на взаимодействии двух или нескольких переменных магнитных потоков с токами, индуцированными в подвижном проводнике (например, диске). Типичным представителем этой системы является классический индукционный счетчик – измеритель активной энергии.
Рассмотрим устройство и принцип действия индукционного однофазного счетчика активной энергии. На рис. 25 показана упрощенная конструкция такого прибора. Основными элементами прибора являются два магнитопровода со своими обмотками (напряжения и токовой), вращающийся диск и счетный механизм. Как и ваттметр, счетчик содержит обмотки тока и напряжения. Включается счетчик в цепь так же, как и ваттметр.
Схема (рис. 26) и векторная диаграмма (рис.27) поясняют принцип действия этого прибора.
Рассмотрим работу счетчика на примере входных сигналов напряжения и тока синусоидальной формы с действующими значениями, равными, соответственно, U и I. Входное напряжение U, приложенное к обмотке напряжения 2, создает в ней ток IU,имеющий по отношению к напряжению U сдвиг по фазе, близкий к 90° (из-за большого индуктивного сопротивления этой обмотки). Ток IU рождает магнитный поток ФU всреднем сердечнике магнитопровода обмотки напряжения 1.
Рис. .25. Упрощенная конструкция индукционного однофазного счетчика
Этот поток ФU делится на два потока: нерабочий поток ФU1,который замыкается внутри магнитопровода 7; и основной поток ФU2, пересекающий диск 6, закрепленный на оси 7 и вращающийся вместе с нею. Этот основной поток замыкается через противополюс 5. Входной ток I, текущий в обмотке тока 4, создает в магнитопроводе 3 магнитный поток ФI , который дважды пересекает диск 6. Поток ФI отстает от тока I на небольшой угол потерь αI, (поскольку сопротивление токовой обмотки мало).
Таким образом, диск пересекают два магнитных потока ФU2и ФI, не совпадающих в пространстве и имеющих фазовый сдвиг ψ. При этом в диске возникает вращающий момент М:
M = cf ФU2 ФI sin ψ,
где с – некая константа; f – частота напряжения.
При работе на линейном участке кривой намагничивания материалов магнитопроводов можно считать, что
ФI = k1I; ФU2= k2IU =k2U / ZU,
где k1и k2– коэффициенты пропорциональности; ZU – полное комплексное сопротивление обмотки напряжения.
Учитывая, что реактивная (индуктивная) составляющая сопротивления обмотки напряжения ZU гораздо больше активной, можно записать
ZU ≈ 2π f LU ,
где LU – индуктивность обмотки напряжения.
Тогда
ФU2= k2U /(2πfLU) = k3U / f,
где k3= k2 /(2πLU).
Рис. 26. Схема, поясняющая принцип действия счетчика:
1 – магнитопровод обмотки напряжения; 2 – обмотка напряжения; 3 – магнитопровод обмотки тока; 4 – обмотка тока; 5 – противополюс; 6 – диск; 7 – ось; 8 – червячная передача; 9 – счетный механизм
Рис. 27. Векторная диаграмма
Следовательно, вращающий момент М в данной электромагнитной механической системе можно определить следующим образом:
М = kUIsinψ,
где k – общий коэффициент пропорциональности.
Для того чтобы вращающий момент был пропорционален текущей активной мощности, необходимо выполнение условия
sinψ = cos φ.
А это в свою очередь будет выполняться, если ψ + φ = 90°. Это равенство может быть обеспечено изменением (регулировкой) угла потерь αI. Изменение этого угла реализуется двухступенчато: грубо – изменением числа короткозамкнутых витков, надетых на магнитопровод 3, а плавно – изменением сопротивления вспомогательной цепи (эти элементы конструкции на рис. 25 и 26 не показаны).
Таким образом обеспечивается пропорциональность вращающего момента М текущему значению активной мощности. Для получения результата определения потребленной активной энергии достаточно проинтегрировать значения текущей мощности. Это интегрирование реализовано счетным механизмом 9, связанным с осью 7 червячной передачей 8.
Постоянный магнит служит для создания тормозного момента и обеспечения угловой скорости вращения, пропорциональной текущему значению активной мощности. Кроме того, в реальной конструкции есть элементы, обеспечивающие дополнительный момент, компенсирующий момент трения, а также элементы устранения «самохода» (на рис. 25 и 26 не приведены).
Включение счетчика.На рис. 28 приведена схема включения однофазного счетчика активной энергии.
Рис. 28. Схема включения однофазного счетчика активной энергии
При необходимости работы в цепях с напряжениями и/или токами, большими, чем номинальные для конкретного счетчика, используются измерительные трансформаторы напряжения и/или тока. Схема подключения такая же, как и в подобном случае с ваттметроми.
Для измерения реактивной энергии также используются индукционные счетчики. Их принцип действия аналогичен рассмотренному. Некоторые различия в конструкции, организации подключения и, как следствие в векторных диаграммах, позволяют получить скорость вращения диска, пропорциональную значению текущей реактивной мощности.
Обозначение индукционной системы на шкалах приборов:
Трехфазные счетчики.Для учета суммарной активной и реактивной энергии в трехфазных цепях используются двухэлементные и трехэлементные счетчики. В таких счетчиках применяются те же конструктивные элементы (два или три механизма), что и в однофазных приборах. Диски (два или три) закреплены на общей оси. Вращающие моменты дисков складываются, и скорость вращения оси зависит от суммарной текущей потребляемой мощности. На рис. 29 упрощенно показано устройство двухэлементного трехфазного счетчика.
Рис. 29. Двухэлементный трехфазный счетчик
Скорость вращения в данном случае определяется суммой моментов М1и М2. Включаются трехфазные счетчики так же, как и трехфазные ваттметры.
Сегодня в задачах измерения активной энергии все шире применяются цифровые (микропроцессорные) счетчики энергии. В задачах технических экспресс-измерений для оценки потребленной энергии в кратковременных экспериментах используют автономные малогабаритные цифровые измерительные регистраторы (анализаторы), которые имеют режим вычисления активной и реактивной энергии или позволяют найти эти величины с помощью компьютера и специализированного программного обеспечения.