Механика жидкостей и газов
Природа давления жидкости, газа и твердого тела отличается. Хотя у давлений жидкости и газа различная природа, у их давлений есть один одинаковый эффект, отличающий их от твердых тел. Этот эффект, а точнее физическое явление, описывает закон Паскаля.
Закон Паскаля утверждает что, производимое внешними силами давление в какое-то место жидкости или газа, передается по жидкости или газу без изменения в любую точку. Этот закон был открыт Блезом Паскалем в XVII веке.
Закон Паскаля означает, что если, например, надавить на газ с силой в 10 Н, и площадь этого давления будет 10 см2 (т. е. (0,1 * 0,1) м2 = 0,01 м2), то давление в месте приложения силы увеличится на p = F/S = 10 Н / 0,01 м2 = 1000 Па, и на эту величину увеличится давление во всех местах газа. То есть давление передастся без изменений в любую точку газа.
То же самое характерно для жидкостей. А вот для твердых тел — нет. Это связано с тем, что молекулы жидкости и газа подвижны, а в твердых телах, хотя и могут колебаться, но остаются на своем месте. В газах и жидкостях молекулы перемещаются из области с более высоким давлением в область с более низким, таким образом давление во всем объеме быстро выравнивается.
Закон Паскаля подтверждается опытом. Если в резиновом шарике, наполненном водой, проколоть очень маленькие дырочки, то вода будет сквозь них капать. Если теперь надавить в какое-нибудь одно место шарика, то из всех дырок, независимо от того, как далеко они находятся от места приложения силы, вода польется примерно одинаковыми по силе струйками. Это говорит о том, что давление распространилось по всему объему.
Закон Паскаля находит практическое применение. Если на небольшую площадь поверхности жидкости подействовать определенной силой, то увеличение давления произойдет по всему объему жидкости. Это давление может совершить работу по перемещению большей площади поверхности.
Например, если на площадь S1 подействовать силой F1, то во всем объеме создастся дополнительное давление p:
p = F1/S1
Это давление оказывает силу F2 на площадь S2:
F2 = pS2
Отсюда видно, что чем больше площадь, тем больше сила. То есть, если мы произвели небольшую силу на маленькую площадь, то она превращается в большую силу на большей площади. Если в формуле заменить давление (p) на первоначальную силу и площадь, то получится такая формула:
F2 = (F1/S1) * S2 = (F1 * S2) / S1
Перенесем F1 в левую часть:
F2/F1 = S2/S1
Отсюда следует, что F2 во столько раз больше F1, во сколько S2 больше S1.
На основе такого выигрыша в силе создаются гидравлические прессы. В них к узкому поршню прикладывается небольшая сила. В результате в широком поршне возникает большая сила, способная поднять тяжелый груз или давить на прессуемые тела.
Барометры и манометры.
Баро́метр (др.-греч. βάρος — «тяжесть» и μετρέω — «измеряю») — прибор для измерения атмосферного давления. Ртутный барометр был изобретён итальянским математиком и физиком Эванджелистой Торричелли в 1644 году, это была тарелка с налитой в неё ртутью и пробиркой(колбой), поставленной отверстием вниз. Когда атмосферное давление повышалось, ртуть поднималась в пробирке, когда же оно понижалось — ртуть опускалась. Из-за неудобства такая конструкция перестала применяться и уступила место барометру-анероиду, но метод, по которому такой барометр был изготовлен, стал применяться в термометрах.
Манометр (греч. manós, неплотный + metréō, измеряю[1]) — прибор, измеряющий давление жидкости или газа[
Сообщающиеся сосуды.
Объектом нашего изучения может быть чайник с нашего кухонного стола, лейка, с помощью которой мы поливаем цветы, или более сложные устройства, такие, как артезианский колодец, водомерное стекло в паровом котле и даже водопровод. Все это устройства, работающие по принципу сообщающихся сосудов (Рис. 1).
Рис. 1. Примеры сообщающихся сосудов: чайник, садовая лейка, водомерное стекло парового котла
Простейшие сообщающиеся сосуды – это две трубки, соединенные между собой резиновым шлангом. Если налить жидкость в одну из этих трубок, то можно видеть, что уровень жидкости в обеих трубках (или, как принято говорить, в обоих коленахсообщающихся сосудов) установится на одной высоте. С чем это может быть связано?
2. Закон сообщающихся сосудов
На предыдущем уроке мы выяснили, что давление жидкости на дно и стенки сосуда зависит от плотности жидкости и высоты ее столба. Поскольку в левом и правом коленах находится одна и та же жидкость и высота столба жидкости в левом и правом коленах также одинакова, то и давление жидкости в обоих коленах одинаково. Следовательно, жидкость находится в равновесии.
Если изменять расположение колен в сообщающихся сосудах, поднимая или опуская одно из них, или даже наклоняя, то жидкость будет перетекать из одного колена в другое до тех пор, пока ее уровень в обоих коленах снова не установится на одной и той же высоте (Рис. 2).
Рис. 2. Уровни однородной жидкости в сообщающихся сосудах устанавливаются на одной высоте
Таким образом, уровни однородной жидкости в сообщающихся сосудах устанавливаются на одной высоте.
Это утверждение называют законом сообщающихся сосудов.
Данный закон выполняется не только для двух, но и для любого количества сообщающихся сосудов, независимо от того, какую форму они имеют и как расположены в пространстве (Рис. 3). Единственно, что необходимо – чтобы во всех сосудах находилась одна и та же (однородная) жидкость.
Рис. 3. Уровни однородной жидкости устанавливаются на одной высоте в сообщающихся сосудах любой формы
3. Поведение неоднородной жидкости
Что произойдет, если жидкость, заполняющая колена сообщающихся сосудов, не будет однородной? Например, пусть в левое колено налито подсолнечное масло, а в правое – подкрашенная вода. Эти жидкости не смешиваются между собой.
Оказывается, что уровень подсолнечного масла расположится на большей высоте, чем уровень воды (Рис. 4). Это связано с тем, что плотность подсолнечного масла меньше, чем плотность воды. Вспомним формулу давления жидкости на дно сосуда
Из этой формулы видно, что чем меньше плотность жидкости ρ, тем больше должна быть высота ее столба h, чтобы создать одно и то же давление.
Рис. 4. Уровень жидкости с меньшей плотностью устанавливается в сообщающихся сосудах на большей высоте
Таким образом, в сообщающихся сосудах уровень жидкости с меньшей плотностью устанавливается на большей высоте.
4. Заключение
Итак, однородная жидкость в коленах сообщающихся сосудов будет устанавливаться на одной высоте, какой бы формы и сечения не были колена.
В случае неоднородной жидкости, имеет значение плотность жидкости, находящейся в коленах. Чем плотность жидкости больше, тем высота столба жидкости меньше.