Рамка с током как регистратор магнитного поля. Вектор магнитной индукции
В этом положении на рамку действует максимальный вращающий момент. Модуль вектора магнитной индукции пропорционален максимальному вращающему моменту: . |
Вращающий момент (7.1) .
Направление вектора совпадает с направлением положительной нормали к рамке.
Вектор связан с направлением тока I правилом правого винта.
В этом положении рамка в равновесии. [B] - Тл, единица магнитной индукции - тесла . |
11.3.1. Линии магнитной индукции:
а) замкнуты, т.к. в природе нет магнитных зарядов;
б) вектор В направлен по касательной к линии магнитной индукции;
в) густота линий магнитной индукции пропорциональна модулю вектора (сравните с 9.3.8).
Закон Био-Савара-Лапласа
Направление плоскости , в которой лежит и и определяется правилом правого винта:
винт установить плоскости и и вращать от к , поступательное движение винта покажет направление - магнитного поля, созданного элементом проводника с током I.
Модуль вектора :
.
Применение закона Био-Савара-Лапласа для нахождения магнитного поля прямого тока
Независимо от положения на проводнике все направлены в одну сторону - от нас. Значит, - без векторов!
Из 11.4:
Для бесконечного проводника α1 = 0, α2 = π, Сos α1 - Сos α2 = 2
.
Теорема о циркуляции вектора В
Циркуляция вектора В по произвольному контуру равна алгебраической сумме токов, охватываемых контуром, помноженной на μ0.
11.5.1. Циркуляция вектора - это интеграл вида:
Интеграл берется по замкнутому контуру. |
Циркуляция для плоского контура, охватывающего бесконечный прямой проводник с током
Из (11.4.1): |
Ток за контуром
При обходе контура 1 через 3 к 2 поворачивается по часовой стрелке, от 2 к 1 через 4 - на тот же угол против часовой стрелки. В результате |
11.5.4. Формулировка теоремы о циркуляции
Пусть контур произвольной формы охватывает произвольное число токов. В этом случае теорема о циркуляции утверждает, что циркуляция вектора по некоторому (произвольному!) контуру равна алгебраической сумме токов, охватываемых контуром, умноженной на μ, т.е.
.
Например:
Ток I4 в сумму не входит!
11.5.5. Применение теоремы о циркуляции для вычисления магнитного поля бесконечно длинного соленоида
Соленоид - провод, навитый на цилиндрический каркас. На один метр длины - n витков.
Выберем такой контур, как на рисунке, т.к. из соображений симметрии вектор может быть направлен только вдоль оси соленоида.
Тогда
.
1) В интервалах от точки 2 до точки 3 и от точки 4 до точки 1 стороне контура, значит Вl = 0.
2) Тогда:
.
3) Можно показать, что вне бесконечного соленоида B=0, т.е.
.
Значит:
,
т.к. внутри соленоида B = Bl = const, то
.
По теореме о циркуляции (11.5.4)
.
Откуда магнитное поле бесконечного соленоида:
.
Направлено вдоль оси соленоида, в соответствии с правилом правого винта.