Система сходящихся сил
Сходящимися называются силы, линии действия которых пересекаются в одной точке. Равнодействующая сходящихся сил равна геометрической сумме этих сил и приложена в точке их пересечения . Равнодействующая может быть найдена геометрич. способом – построением силового (векторного) многоугольника или аналитич. способом, проектируя силы на оси координат. Проекции силы на оси координат (для плоской сист.): Fx=F×cosa; Fy=F×cosb=F×sina; проекция >0, если направление составляющей силы совпадает с направл. оси. Модуль силы: ; направляющие косинусы: разложение силы на составляющие: , где – орт (единичный вектор) соответствующей оси.
Для пространственной системы: ,
Fx=Fcosa; Fy=Fcosb; Fz=Fcosg; ; .
Проекции равнодействующей системы сходящихся сил на координатные оси равна алгебраическим суммам проекций этих сил на соответствующие оси: Rx=åFix; Ry=åFiy; Rz=åFiz; .
Условия равновесия сист. сходящихся сил: геометрическое:
аналитические: åFix=0; åFiy=0; åFiz=0. Теорема о трех непараллельных силах: Если под действием трех сил тело находится в равновесии и линии действия двух сил пересекаются, то все силы лежат в одной плоскости и их линии действия пересекаются в одной точке.
5. Сложение параллельных сил.
Проекция силы на ось – алгебраическая величина, равная произведению модуля силы на косинус угла между силой и положительным направлением оси. Проекция вектора суммы на какую-нибудь ось равна алгебраической проекций слагаемых векторов на ту же ось.
Теория пар сил. Сложение двух параллельных сил: равнодейст-ющая двух парал-ых сил F1 и F2 одного направления имеет такое же направление, ее модуль равен сумме модулей слагаемых сил, а точка приложения делит отрезок между точками приложения сил на части обратно пропорциональные модулям сил: R=F1 + F2; АС/ВС=F2/F1. Равнодействующая двух противоположно направленных паралл-ных сил имеет направление силы большей по модулю и модуль, равный разности модулей сил.
Система двух параллельных сил, равных по модулю и направленных в разные стороны, назыв. парой сил. Кратчайшее расстояние между линиями действия этих сил назыв. плечом пары "h". Действия пары сил характеризуется ее моментом. Момент пары сил M = F×h – произведение модуля одной из сил пары на ее плечо.
Момент пары сил – вектор, направленный перпендикулярно плоскости сил, так, что, если смотреть ему навстречу, то видим вращение пары против хода час.стр. M>0, если против час.стр., M<0 – по час.стр (на рис М>0).
Теоремы о парах. 1) Две пары, лежащие в одной плоскости, можно заменить одной парой, лежащей в той же плоскости, с моментом, равным сумме моментов данных двух пар. . 2) Две пары, имеющие геометрически равные моменты, эквиваленты. 3) Не нарушая состояния твердого тела, пару сил можно переносить в плоскости ее действия. Т.е. момент пары сил является свободным вектором. 4) Система нескольких пар сил эквивалента одной паре, момент которой равен векторной сумме моментов данных пар. Т.е. система пар приводится к одной паре, момент которой равен сумме моментов всех пар. Условие равновесия пар сил: – геометрическая сумма их моментов равна 0. Пары сил, расположенные в одной плоскости, взаимно уравновеш-тся, если алгебраическая сумма их моментов åМi=0.
Момент силы относительно точки – вектор, численно равный произведению модуля силы на плечо и направленный перпендикулярно плоскости, содержащей силу и точку, в такую сторону, чтобы смотря ему навстречу, видеть силу стремящейся повернуться против хода час.стрелки. Плечо "h"– кратчайшее расстояние от точки до линии действия силы. – момент силы равен векторному произведению вектора на вектор . Модуль векторного произведения: R×F×sina= F×h. Для плоской сист. сил обычно находят не вектор момента, а только его модуль: ±F×h, >0 – против час.стр.; <0 – по час.стр. Свойства момента силы: 1) момент силы не изменяется при переносе точки приложения силы вдоль ее линии действия; 2) момент силы относит. точки =0 только тогда, когда сила =0 или когда линия действия силы проходит через точку (т.е. плечо =0). Если x,y,z – координаты точки приложения силы, Fx, Fy, Fz – проекции силы на оси координат и точка 0 – начало координат, то
=(yFz – zFy) +(zFx – xFz) +(xFy – yFx) , откуда проекции момента силы на оси коорд.: М0x( )=yFz – zFy; М0y( )=zFx – xFz; М0z( )=xFy – yFx.
Главный вектор – векторная сумма всех сил, приложенных к телу. Главный момент относительно центра –векторная сумма моментов всех сил, приложенных к телу относительно того же центра.
Теорема (лемма) о параллельном переносе силы: сила приложенная в какой-либо точке тверд. тела, эквивалента такой же силе, приложенной в любой др. точке этого тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.