Методы описания движения сплошной среды

методы описания движения сплошной среды - student2.ru Рис. 3.1. Скорость и ускорение материальной точки. Пунктиром показана её траектория

При изучении движения сплошной среды можно также выделить бесконечно малые объёмы, положение которых характеризуется в пространстве тремя координатами или величиной одного радиус-вектора методы описания движения сплошной среды - student2.ru , и рассматривать движение сплошной среды как движение совокупности взаимно связанных и взаимодействующих бесконечно малых (точечных) объёмов.

Метод Лагранжа. Обозначим координаты начального (в момент времени методы описания движения сплошной среды - student2.ru ) положения каждой точки сплошной среды через методы описания движения сплошной среды - student2.ru . Для полного описания движения сплошной среды необходимо знать траектории движения всех частиц, т.е. положение каждой частицы в любой момент времени методы описания движения сплошной среды - student2.ru . Это означает, что для каждой частицы надо знать уравнение её траектории методы описания движения сплошной среды - student2.ru . При этом одну частицу от другой отличает начальное положение частицы, и, следовательно, величина методы описания движения сплошной среды - student2.ru войдёт в уравнение траектории жидкой частицы как параметр:

методы описания движения сплошной среды - student2.ru Рис.3.2. Задание координат методом Лагранжа

методы описания движения сплошной среды - student2.ru . (3.2.1)

Такой подход к описанию движения сплошной среды называется методом Лагранжа, а характеристики сплошной среды (скорость, плотность, давление и т.п.), связанные с движущимися элементарными объёмами сплошной среды, равно как и координаты этого объёма, называются лагранжевыми переменными.

Лагранжевы координаты - это параметры, которые характеризуют каждую точку среды и не меняются в процессе. Таким образом, точка зрения Лагранжа опирается на описание истории движения каждой точки сплошной среды в отдельности. Такое описание на практике оказывается слишком подробным и сложным, оно всегда подразумевается при формулировке физических законов.

Используя равенства, введённые в теоретической механике

методы описания движения сплошной среды - student2.ru ,

можно вычислить скорость и ускорение каждой частицы, а затем, определив величину внешних (поверхностных и объёмных) сил, действующих на каждую частицу, записать уравнения движения для сплошной среды.

Несмотря на кажущуюся простоту метода Лагранжа, уравнения движения, получаемые на основе этого метода, очень сложны, и он используется сравнительно редко.

Более удобен и потому гораздо шире используется другой подход к описанию движения сплошной среды, называемый методом Эйлера.

Согласно этому методу фиксируют не частицы жидкости, а точки пространства, через которые проходят в разные моменты времени различные элементарные объёмы жидкости, т.е. жидкие частицы. В этих точках определяются значения скорости движения сплошной среды. Таким образом, средством описания движения сплошной среды является поле скорости движения жидких частиц в фиксированных точках пространства:

методы описания движения сплошной среды - student2.ru . (3.2.2)

Характеристики сплошной среды (поле скорости, поле давлений, поле напряжений и т.п.), отнесённые к фиксированным неподвижным элементам геометрического пространства (точкам, линиям, поверхностям, объёмам), и сами эти элементы называют эйлеровыми переменными.

Этот метод удобен благодаря следующим преимуществам.

· Во-первых, наблюдать за движущимися (например, в трубе) фиксированными (мечеными) жидкими частицами значительно сложнее, чем за характеристиками движения сплошной среды.

· Во-вторых, соответствующие этому методу уравнения оказываются проще для анализа.

Подчеркнём, что, если в методе Лагранжа методы описания движения сплошной среды - student2.ru - это искомые функции времени, то в методе Эйлера пространственные координаты методы описания движения сплошной среды - student2.ru - не функции времени, а независимые переменные, декартовы координаты пространства, в котором перемещается сплошная среда. Искомыми переменными являются скорость методы описания движения сплошной среды - student2.ru и давление методы описания движения сплошной среды - student2.ru .

Учитывая, что в методе Эйлера описание движения отличается от принятого в теоретической механике, существуют некоторые отличия в определении ускорения, которое входит во второй закон Ньютона. В это уравнение входит ускорение материальной точки, которое для сплошной среды определяется, как и в теоретической механике, второй производной пути по времени только при использовании метода Лагранжа. В случае метода Эйлера ускорение, а также другие гидромеханические величины, которые меняются вместе с движением объёма жидкости, выражаются через специальный вид производной, которая определённым образом связана с полем скорости (3.2.2). Вместе с тем эта производная должна быть связана с движением частиц жидкости или газа (субстанции). Такую производную называют полной или субстанциальной.

Скорость. Пусть некоторая точка сплошной среды в момент t находится в точке М пространства, а в момент t + Dt в точке M´, и методы описания движения сплошной среды - student2.ru . Dr-малоенаправленноеперемещениеиндивидуальнойточки сплошной среды за время Dt(если в пространстве можно ввести радиус-вектор, то это приращение радиус-вектора рассматриваемой точки сплошной среды). Предел отношения двух соответствующих бесконечно малых количеств Dr и Dt при Dt® 0 (в случае неевклидова пространства) или частная производная радиуса-вектора точки сплошной среды относительно системы отсчёта по времени методы описания движения сплошной среды - student2.ru (в случае евклидова пространства) называется скоростью точки сплошной среды.

Радиус-вектор r зависит в общем случае от трёх параметров x, y, z , индивидуализирующих точку сплошной среды, и времени t. Скорость вычисляется для индивидуальной точки сплошной среды, т.е. при фиксированных x, y, z , поэтому и берётся частная производная от rпо t: методы описания движения сплошной среды - student2.ru . Бесконечно малое перемещение точки сплошной среды методы описания движения сплошной среды - student2.ruможно разложить по векторам базиса, взятым в точке М:

Dr = Dx×i + Dy×j + Dz×k,

где Dx, Dy, Dz являются компонентами перемещения Dr.Или, переписывая в обобщённом и сокращённом виде, будем иметь

Dr = S Dxi еi = Dxi еi (*)

(В последнем выражении знак суммы опущен).

Поделив (*) на элемент времени Dt,соответствующий перемещению точки сплошной среды из точки Мв точку M´ пространства наблюдателя, и взяв предел при Dt® 0, получим по определению скорость точки сплошной среды : методы описания движения сплошной среды - student2.ru ,

откуда методы описания движения сплошной среды - student2.ru ,

индексы методы описания движения сплошной среды - student2.ru внизу указывают на то, что производные берутся при постоянных параметрах, индивидуализирующих точку среды. Величины vx, vy, vz называются компонентами вектора скорости v в базисе i, j, k. Скорость и её компоненты зависят от x, y, z, t:

vx = vx (x, y, z, t),

vy = vy (x, y, z, t),

vz = vz (x, y, z, t).

Запишем проекции скоростей и ускорений точек среды на обобщённые оси координат хi, которые определяются обычными равенствами:

методы описания движения сплошной среды - student2.ru ,

методы описания движения сплошной среды - student2.ru . (3.2.3)

Таким образом, в методе Эйлера задаются перемещение, скорость, ускорение в точке пространства (неподвижная система отсчёта), мимо которой в данный момент проходят частицы среды как функции координат точек пространства xi и времени t:

ui = ui (x1, x2, x3 , t);

vi = vi (x1, x2, x3 , t);

аi = ai (x1, x2, x3 , t). (3.2.4)

Совокупность параметров хi и tназывают переменными Эйлера.

Ввиду того, что в механике сплошной среды могут встретиться оба метода, необходимо научиться осуществлять переход от одних переменных к другим.

Переход от переменных Лагранжа к переменным Эйлера.Предположим, что у нас всё известно о среде с точки зрения Лагранжа, то есть, мы имеем методы описания движения сплошной среды - student2.ru и закон движения в соответствующей форме:

методы описания движения сплошной среды - student2.ru

Для того, чтобы перейти к переменным Эйлера нам необходимо:

· разрешить уравнения относительно xi. При фиксированных координатах хi эти соотношения указывают те точки xi сплошной среды, которые в разные моменты времени проходят через данную точку пространства.

xi = xi(x1, x2, x3 , t)

или

методы описания движения сплошной среды - student2.ru (3.2.5)

· подставить это в выражения по Эйлеру:

методы описания движения сплошной среды - student2.ru .

методы описания движения сплошной среды - student2.ru Рис. 3.3. Переход от координат Эйлера к координатам Лагранжа

Для перехода от переменных Эйлера к переменным Лагранжаимеем:

методы описания движения сплошной среды - student2.ru (*),проекция которой на ось х2 равна методы описания движения сплошной среды - student2.ru , а проекция на ось х3 равна методы описания движения сплошной среды - student2.ru .

Для начальных условий при t = 0:

методы описания движения сплошной среды - student2.ru ,

откуда

· получим систему обыкновенных дифференциальных уравнений относительно хi: методы описания движения сплошной среды - student2.ru или

методы описания движения сплошной среды - student2.ru

· Решая эту систему, определим хi = хi1, С2, С3, t),где - С1, С2, С3-постоянные, определяемые по хi при t = t0;

· подставив (**) в (*),получим лагранжевы координаты.

методы описания движения сплошной среды - student2.ru .

Ускорение и его вычисление по скорости.Ускорение – это скорость изменения скорости индивидуальной частицы. Если скорость задана по Лагранжу, т.е.

методы описания движения сплошной среды - student2.ru .

Если скорость задана по Эйлеру, то методы описания движения сплошной среды - student2.ru В индивидуальной частице: методы описания движения сплошной среды - student2.ru

Поэтому методы описания движения сплошной среды - student2.ru по формуле дифференцирования сложной функции

методы описания движения сплошной среды - student2.ru

Окончательная формула по Эйлеру будет выглядеть:

методы описания движения сплошной среды - student2.ru .

Это полная (материальная) производная скорости по времени, индивидуальная производная по времени, субстанциальная производная.

По Эйлеру методы описания движения сплошной среды - student2.ru производная по времени при xi = const – изменение скорости по времени в данном месте пространства – локальная производная по времени.

Если методы описания движения сплошной среды - student2.ru =0, то движение установившееся (стационарное):

методы описания движения сплошной среды - student2.ru .

В декартовых координатах x,y,z:

методы описания движения сплошной среды - student2.ru .

В проекциях

методы описания движения сплошной среды - student2.ru ;

методы описания движения сплошной среды - student2.ru ;

методы описания движения сплошной среды - student2.ru .

Материальная (полная) или индивидуальная производная по t от любой величины (например, плотности r) определится следующим образом:

· Если используется способ Лагранжа, т.е. если методы описания движения сплошной среды - student2.ru , то индивидуальная производная есть частная методы описания движения сплошной среды - student2.ru .

· Если используется способ Эйлера, т.е. методы описания движения сплошной среды - student2.ru , то индивидуальная производная есть

методы описания движения сплошной среды - student2.ru или = методы описания движения сплошной среды - student2.ru методы описания движения сплошной среды - student2.ru .

Для несжимаемой среды методы описания движения сплошной среды - student2.ru , при этом методы описания движения сплошной среды - student2.ru методы описания движения сплошной среды - student2.ru может быть и не равно 0 (т.к.среда неоднородная).

Таким образом, если функция задана в переменных Эйлера: r = r (x1, x2, x3, t), необходимо

· перейти к переменным Лагранжа;

· воспользоваться правилом дифференцирования сложной функции, в результате чего получим

методы описания движения сплошной среды - student2.ru . (3.2.6)

Производнаяметоды описания движения сплошной среды - student2.ruназывается полной производной (индивидуальной, субстанциальной) и характеризует изменение плотности данной частицы сплошной среды в единицу времени. Производная методы описания движения сплошной среды - student2.ru называется частной (местной, локальной) и характеризует изменение плотности в данной точке пространства в единицу времени. Величина методы описания движения сплошной среды - student2.ru называется конвективной производной.

Рассмотрим полную производную по времени от температуры. По Эйлеру это будет выглядеть следующим образом:

методы описания движения сплошной среды - student2.ru .

Физический смысл (по Эйлеру) – это производная температуры по времени в какой-либо фиксированной точке пространства x = const. В координатах Лагранжа методы описания движения сплошной среды - student2.ru . Физический смысл (по Лагранжу) - производная по времени температуры какой-то частицы, где бы она ни находилась.

методы описания движения сплошной среды - student2.ru Рис.3.4. Векторные линии или линии тока

Линия тока и траектория. Линией тока в поле скорости сплошной среды (в фиксированный момент времени) называется такая кривая, в каждой точке которой вектор скорости направлен по касательной к ней. Линия тока является эйлеровой характеристикой потока; её не следует отождествлять с траекторией - геометрическим местом последовательных положений материальной точки (элементарной жидкой частицы) при её движении в пространстве, которая является лагранжевой характеристикой потока. Траектория - это путь индивидуальной частицы. Поэтому эти линии совпадают только при установившемся движении, когда поле скорости не меняется во времени, т.е. u = u (r). Если же движение неустановившееся, u = u(r,t), то эти линии не совпадают.

Важной особенностью совокупности линий тока в фиксированный момент времени является то, что они никогда не пересекаются друг с другом, за исключением особых точек (например, в случае источника - фонтана). Это следует из того, что скорость в данной точке не может быть касательной одновременно к двум пересекающимся кривым.

методы описания движения сплошной среды - student2.ru Рис. 3.5. Траектория движения частицы

Если элементарный вектор, касательный к линии тока, обозначить через методы описания движения сплошной среды - student2.ru , то вследствие того, что вектор методы описания движения сплошной среды - student2.ru коллинеарен методы описания движения сплошной среды - student2.ru , дифференциальные уравнения линий тока можно записать в виде

методы описания движения сплошной среды - student2.ru . (3.2.7)

Таким образом,

методы описания движения сплошной среды - student2.ru ,

методы описания движения сплошной среды - student2.ru ,

методы описания движения сплошной среды - student2.ru (при t = const).

методы описания движения сплошной среды - student2.ru Рис.3.6. Линии тока и траектории: а - при установившемся движении совпадают; б - при неустановившемся движении 1,2.3 - линии тока в моменты времени t, t + Dt1, t + Dt2. Т - траектории элементарного жидкого объёма показаны пунктиром

Особенности лагранжева и эйлерова методов описания движения сплошной среды продемонстрируем на примере установившегося движения жидкости (рис.3.6), при котором траектория и линия тока совпадают.

При лагранжевом методе (рис.3.4,а) жидкая частица, имеющая при t = t0 начальную координату r0 = (x0, y0, z0), движется по траектории, занимая в моменты времени t0, t0 +Dt, t0 + 2Dt, t0 + 3Dt положения в пространстве, отмеченные на рисунке точками, то есть в параметрическом виде будем иметь методы описания движения сплошной среды - student2.ru .

Скорость этой частицы изменяется со временем; картина течения представляется набором траекторий различных частиц жидкости. При эйлеровом подходе тот же поток (рис.3.6,б) описывается полем скорости u = u(r,t); при установившемся движении, когда методы описания движения сплошной среды - student2.ru , скорость жидкости в любой точке потока зависит только от пространственных координат этой точки методы описания движения сплошной среды - student2.ru . Картина течения характеризуется достаточным набором линий тока.

Если выбрать произвольную кривую С, не совпадающую с линией тока, и через каждую её точку провести линию тока, то образуется поверхность тока. Если кривая С замкнута, поверхность тока превращается в трубку тока.

Аналитически семейство линий тока в проекциях выглядит следующим образом:

методы описания движения сплошной среды - student2.ru (i = 1,2,3). (3.2.8)

Где dl - скалярный параметр. Выражение (3.2.8) – это дифференциальные уравнения линий тока.

Они отличаются от уравнений, описывающих закон движения или траектории движения частиц сплошной среды:

методы описания движения сплошной среды - student2.ru (i = 1,2,3), (3.2.9)

тем, что в уравнениях (3.2.8) t –параметр, а в(3.2.9) t - переменная величина.

Итак, линии тока не совпадают с траекториями. Совпадать они могут только в двух случаях:

1. При установившихся движениях (тогда между двумя последними уравнениями нет различия).

2. При неустановившихся течениях (когда поле скоростей меняется по величине, но не меняется по направлению).

Если какая-либо скалярная величина задана как функция переменных Эйлера, то в каждый момент времени можно рассматривать

поверхность, где

f (x1 , x2 , x3 ,t) = const. (3.2.10)

Эта поверхность называется поверхностью равного уровня или эквипотенциальной поверхностью. Вектор, направленный по нормалиметоды описания движения сплошной среды - student2.ruвкакой-либо точке Мэквипотенциальной поверхности (3.2.10)в сторону ростаrи равный по величинеметоды описания движения сплошной среды - student2.ru ,называется вектором-градиентом скалярной функции r в точке М.

Вектор-градиент обозначается как grad r и вычисляется по формуле:

методы описания движения сплошной среды - student2.ru ,

где методы описания движения сплошной среды - student2.ru -единичные векторы по направлению методы описания движения сплошной среды - student2.ru и вдоль координатных осей.

Проекция вектора grad r на некоторое направление методы описания движения сплошной среды - student2.ru определяет изменение плотностей в этом направлении:

методы описания движения сплошной среды - student2.ru

где q - угол между направлениями методы описания движения сплошной среды - student2.ru и методы описания движения сплошной среды - student2.ru ; Cos aI – направляющие косинусы вектора методы описания движения сплошной среды - student2.ru .

Наибольшее изменение плотности происходит в направлении, нормальном к поверхности (3.2.10).

Наши рекомендации