Методы описания движения сплошной среды
Рис. 3.1. Скорость и ускорение материальной точки. Пунктиром показана её траектория |
При изучении движения сплошной среды можно также выделить бесконечно малые объёмы, положение которых характеризуется в пространстве тремя координатами или величиной одного радиус-вектора , и рассматривать движение сплошной среды как движение совокупности взаимно связанных и взаимодействующих бесконечно малых (точечных) объёмов.
Метод Лагранжа. Обозначим координаты начального (в момент времени ) положения каждой точки сплошной среды через . Для полного описания движения сплошной среды необходимо знать траектории движения всех частиц, т.е. положение каждой частицы в любой момент времени . Это означает, что для каждой частицы надо знать уравнение её траектории . При этом одну частицу от другой отличает начальное положение частицы, и, следовательно, величина войдёт в уравнение траектории жидкой частицы как параметр:
Рис.3.2. Задание координат методом Лагранжа |
. (3.2.1)
Такой подход к описанию движения сплошной среды называется методом Лагранжа, а характеристики сплошной среды (скорость, плотность, давление и т.п.), связанные с движущимися элементарными объёмами сплошной среды, равно как и координаты этого объёма, называются лагранжевыми переменными.
Лагранжевы координаты - это параметры, которые характеризуют каждую точку среды и не меняются в процессе. Таким образом, точка зрения Лагранжа опирается на описание истории движения каждой точки сплошной среды в отдельности. Такое описание на практике оказывается слишком подробным и сложным, оно всегда подразумевается при формулировке физических законов.
Используя равенства, введённые в теоретической механике
,
можно вычислить скорость и ускорение каждой частицы, а затем, определив величину внешних (поверхностных и объёмных) сил, действующих на каждую частицу, записать уравнения движения для сплошной среды.
Несмотря на кажущуюся простоту метода Лагранжа, уравнения движения, получаемые на основе этого метода, очень сложны, и он используется сравнительно редко.
Более удобен и потому гораздо шире используется другой подход к описанию движения сплошной среды, называемый методом Эйлера.
Согласно этому методу фиксируют не частицы жидкости, а точки пространства, через которые проходят в разные моменты времени различные элементарные объёмы жидкости, т.е. жидкие частицы. В этих точках определяются значения скорости движения сплошной среды. Таким образом, средством описания движения сплошной среды является поле скорости движения жидких частиц в фиксированных точках пространства:
. (3.2.2)
Характеристики сплошной среды (поле скорости, поле давлений, поле напряжений и т.п.), отнесённые к фиксированным неподвижным элементам геометрического пространства (точкам, линиям, поверхностям, объёмам), и сами эти элементы называют эйлеровыми переменными.
Этот метод удобен благодаря следующим преимуществам.
· Во-первых, наблюдать за движущимися (например, в трубе) фиксированными (мечеными) жидкими частицами значительно сложнее, чем за характеристиками движения сплошной среды.
· Во-вторых, соответствующие этому методу уравнения оказываются проще для анализа.
Подчеркнём, что, если в методе Лагранжа - это искомые функции времени, то в методе Эйлера пространственные координаты - не функции времени, а независимые переменные, декартовы координаты пространства, в котором перемещается сплошная среда. Искомыми переменными являются скорость и давление .
Учитывая, что в методе Эйлера описание движения отличается от принятого в теоретической механике, существуют некоторые отличия в определении ускорения, которое входит во второй закон Ньютона. В это уравнение входит ускорение материальной точки, которое для сплошной среды определяется, как и в теоретической механике, второй производной пути по времени только при использовании метода Лагранжа. В случае метода Эйлера ускорение, а также другие гидромеханические величины, которые меняются вместе с движением объёма жидкости, выражаются через специальный вид производной, которая определённым образом связана с полем скорости (3.2.2). Вместе с тем эта производная должна быть связана с движением частиц жидкости или газа (субстанции). Такую производную называют полной или субстанциальной.
Скорость. Пусть некоторая точка сплошной среды в момент t находится в точке М пространства, а в момент t + Dt в точке M´, и . Dr-малоенаправленноеперемещениеиндивидуальнойточки сплошной среды за время Dt(если в пространстве можно ввести радиус-вектор, то это приращение радиус-вектора рассматриваемой точки сплошной среды). Предел отношения двух соответствующих бесконечно малых количеств Dr и Dt при Dt® 0 (в случае неевклидова пространства) или частная производная радиуса-вектора точки сплошной среды относительно системы отсчёта по времени (в случае евклидова пространства) называется скоростью точки сплошной среды.
Радиус-вектор r зависит в общем случае от трёх параметров x, y, z , индивидуализирующих точку сплошной среды, и времени t. Скорость вычисляется для индивидуальной точки сплошной среды, т.е. при фиксированных x, y, z , поэтому и берётся частная производная от rпо t: . Бесконечно малое перемещение точки сплошной среды можно разложить по векторам базиса, взятым в точке М:
Dr = Dx×i + Dy×j + Dz×k,
где Dx, Dy, Dz являются компонентами перемещения Dr.Или, переписывая в обобщённом и сокращённом виде, будем иметь
Dr = S Dxi еi = Dxi еi (*)
(В последнем выражении знак суммы опущен).
Поделив (*) на элемент времени Dt,соответствующий перемещению точки сплошной среды из точки Мв точку M´ пространства наблюдателя, и взяв предел при Dt® 0, получим по определению скорость точки сплошной среды : ,
откуда ,
индексы внизу указывают на то, что производные берутся при постоянных параметрах, индивидуализирующих точку среды. Величины vx, vy, vz называются компонентами вектора скорости v в базисе i, j, k. Скорость и её компоненты зависят от x, y, z, t:
vx = vx (x, y, z, t),
vy = vy (x, y, z, t),
vz = vz (x, y, z, t).
Запишем проекции скоростей и ускорений точек среды на обобщённые оси координат хi, которые определяются обычными равенствами:
,
. (3.2.3)
Таким образом, в методе Эйлера задаются перемещение, скорость, ускорение в точке пространства (неподвижная система отсчёта), мимо которой в данный момент проходят частицы среды как функции координат точек пространства xi и времени t:
ui = ui (x1, x2, x3 , t);
vi = vi (x1, x2, x3 , t);
аi = ai (x1, x2, x3 , t). (3.2.4)
Совокупность параметров хi и tназывают переменными Эйлера.
Ввиду того, что в механике сплошной среды могут встретиться оба метода, необходимо научиться осуществлять переход от одних переменных к другим.
Переход от переменных Лагранжа к переменным Эйлера.Предположим, что у нас всё известно о среде с точки зрения Лагранжа, то есть, мы имеем и закон движения в соответствующей форме:
Для того, чтобы перейти к переменным Эйлера нам необходимо:
· разрешить уравнения относительно xi. При фиксированных координатах хi эти соотношения указывают те точки xi сплошной среды, которые в разные моменты времени проходят через данную точку пространства.
xi = xi(x1, x2, x3 , t)
или
(3.2.5)
· подставить это в выражения по Эйлеру:
.
Рис. 3.3. Переход от координат Эйлера к координатам Лагранжа |
Для перехода от переменных Эйлера к переменным Лагранжаимеем:
(*),проекция которой на ось х2 равна , а проекция на ось х3 равна .
Для начальных условий при t = 0:
,
откуда
· получим систему обыкновенных дифференциальных уравнений относительно хi: или
· Решая эту систему, определим хi = хi(С1, С2, С3, t),где - С1, С2, С3-постоянные, определяемые по хi при t = t0;
· подставив (**) в (*),получим лагранжевы координаты.
.
Ускорение и его вычисление по скорости.Ускорение – это скорость изменения скорости индивидуальной частицы. Если скорость задана по Лагранжу, т.е.
.
Если скорость задана по Эйлеру, то В индивидуальной частице:
Поэтому по формуле дифференцирования сложной функции
Окончательная формула по Эйлеру будет выглядеть:
.
Это полная (материальная) производная скорости по времени, индивидуальная производная по времени, субстанциальная производная.
По Эйлеру производная по времени при xi = const – изменение скорости по времени в данном месте пространства – локальная производная по времени.
Если =0, то движение установившееся (стационарное):
.
В декартовых координатах x,y,z:
.
В проекциях
;
;
.
Материальная (полная) или индивидуальная производная по t от любой величины (например, плотности r) определится следующим образом:
· Если используется способ Лагранжа, т.е. если , то индивидуальная производная есть частная .
· Если используется способ Эйлера, т.е. , то индивидуальная производная есть
или = .
Для несжимаемой среды , при этом может быть и не равно 0 (т.к.среда неоднородная).
Таким образом, если функция задана в переменных Эйлера: r = r (x1, x2, x3, t), необходимо
· перейти к переменным Лагранжа;
· воспользоваться правилом дифференцирования сложной функции, в результате чего получим
. (3.2.6)
Производнаяназывается полной производной (индивидуальной, субстанциальной) и характеризует изменение плотности данной частицы сплошной среды в единицу времени. Производная называется частной (местной, локальной) и характеризует изменение плотности в данной точке пространства в единицу времени. Величина называется конвективной производной.
Рассмотрим полную производную по времени от температуры. По Эйлеру это будет выглядеть следующим образом:
.
Физический смысл (по Эйлеру) – это производная температуры по времени в какой-либо фиксированной точке пространства x = const. В координатах Лагранжа . Физический смысл (по Лагранжу) - производная по времени температуры какой-то частицы, где бы она ни находилась.
Рис.3.4. Векторные линии или линии тока |
Линия тока и траектория. Линией тока в поле скорости сплошной среды (в фиксированный момент времени) называется такая кривая, в каждой точке которой вектор скорости направлен по касательной к ней. Линия тока является эйлеровой характеристикой потока; её не следует отождествлять с траекторией - геометрическим местом последовательных положений материальной точки (элементарной жидкой частицы) при её движении в пространстве, которая является лагранжевой характеристикой потока. Траектория - это путь индивидуальной частицы. Поэтому эти линии совпадают только при установившемся движении, когда поле скорости не меняется во времени, т.е. u = u (r). Если же движение неустановившееся, u = u(r,t), то эти линии не совпадают.
Важной особенностью совокупности линий тока в фиксированный момент времени является то, что они никогда не пересекаются друг с другом, за исключением особых точек (например, в случае источника - фонтана). Это следует из того, что скорость в данной точке не может быть касательной одновременно к двум пересекающимся кривым.
Рис. 3.5. Траектория движения частицы |
Если элементарный вектор, касательный к линии тока, обозначить через , то вследствие того, что вектор коллинеарен , дифференциальные уравнения линий тока можно записать в виде
. (3.2.7)
Таким образом,
,
,
(при t = const).
Рис.3.6. Линии тока и траектории: а - при установившемся движении совпадают; б - при неустановившемся движении 1,2.3 - линии тока в моменты времени t, t + Dt1, t + Dt2. Т - траектории элементарного жидкого объёма показаны пунктиром |
Особенности лагранжева и эйлерова методов описания движения сплошной среды продемонстрируем на примере установившегося движения жидкости (рис.3.6), при котором траектория и линия тока совпадают.
При лагранжевом методе (рис.3.4,а) жидкая частица, имеющая при t = t0 начальную координату r0 = (x0, y0, z0), движется по траектории, занимая в моменты времени t0, t0 +Dt, t0 + 2Dt, t0 + 3Dt положения в пространстве, отмеченные на рисунке точками, то есть в параметрическом виде будем иметь .
Скорость этой частицы изменяется со временем; картина течения представляется набором траекторий различных частиц жидкости. При эйлеровом подходе тот же поток (рис.3.6,б) описывается полем скорости u = u(r,t); при установившемся движении, когда , скорость жидкости в любой точке потока зависит только от пространственных координат этой точки . Картина течения характеризуется достаточным набором линий тока.
Если выбрать произвольную кривую С, не совпадающую с линией тока, и через каждую её точку провести линию тока, то образуется поверхность тока. Если кривая С замкнута, поверхность тока превращается в трубку тока.
Аналитически семейство линий тока в проекциях выглядит следующим образом:
(i = 1,2,3). (3.2.8)
Где dl - скалярный параметр. Выражение (3.2.8) – это дифференциальные уравнения линий тока.
Они отличаются от уравнений, описывающих закон движения или траектории движения частиц сплошной среды:
(i = 1,2,3), (3.2.9)
тем, что в уравнениях (3.2.8) t –параметр, а в(3.2.9) t - переменная величина.
Итак, линии тока не совпадают с траекториями. Совпадать они могут только в двух случаях:
1. При установившихся движениях (тогда между двумя последними уравнениями нет различия).
2. При неустановившихся течениях (когда поле скоростей меняется по величине, но не меняется по направлению).
Если какая-либо скалярная величина задана как функция переменных Эйлера, то в каждый момент времени можно рассматривать
поверхность, где
f (x1 , x2 , x3 ,t) = const. (3.2.10)
Эта поверхность называется поверхностью равного уровня или эквипотенциальной поверхностью. Вектор, направленный по нормаливкакой-либо точке Мэквипотенциальной поверхности (3.2.10)в сторону ростаrи равный по величине ,называется вектором-градиентом скалярной функции r в точке М.
Вектор-градиент обозначается как grad r и вычисляется по формуле:
,
где -единичные векторы по направлению и вдоль координатных осей.
Проекция вектора grad r на некоторое направление определяет изменение плотностей в этом направлении:
где q - угол между направлениями и ; Cos aI – направляющие косинусы вектора .
Наибольшее изменение плотности происходит в направлении, нормальном к поверхности (3.2.10).