Ускорения точек тела при плоском движении
Рассматривая плоское движение плоской фигуры как сложное, состоящее из переносного поступательного вместе с полюсом и относительного вращательного вокруг , по теореме о сложении ускорений для точки имеем
. (81)
Так как переносное движение является поступательным вместе с точкой фигуры, то переносное ускорение
Относительное ускорение точки от вращения вокруг полюса обозначим . После этого формула (81) принимает вид
. (82)
т. е. ускорение какой-либо точки плоской фигуры при плоском движении равно векторной сумме ускорения полюса и ускорения этой точки от вращательного движения плоской фигуры вокруг полюса.
Ускорение от относительного вращательного движения вокруг полюса, как и в случае вращения тела вокруг неподвижной оси, состоит из касательной и нормальной составляющих и :
, (83)
причем
, (84)
, (85)
. (86)
Касательное относительное ускорение направлено по перпендикуляру к отрезку в сторону дуговой стрелки углового ускорения (рис. 43, а). Нормальное относительное ускорение соответственно направлено по линии от точки к полюсу . Наконец, полное относительное ускорение составляет с отрезком угол , тангенс которого можно определить по формуле
. (87)
а) б)
Рис. 43
Из формулы (87) следует, что угол для всех точек плоской фигуры одинаков. При угол от ускорения к отрезку надо откладывать против часовой стрелки. При его надо откладывать по часовой стрелке, т. е. во всех случаях, независимо от направления вращения фигуры, угол всегда надо откладывать в направлении дуговой стрелки углового ускорения. В соответствии с (82) и (83) можно построить в выбранном масштабе многоугольник ускорений для точки (рис. 43, б).
Формулу (82), определяющую зависимость ускорений двух точек плоской фигуры, можно получить непосредственным дифференцированием векторного равенства для скоростей, справедливого в любой момент времени. Имеем
.
Продифференцируем по времени обе части этого равенства, учитывая изменения векторных величин относительно неподвижной системы координат (полные производные). Получаем
.
Здесь , – ускорения точек и относительно неподвижной системы координат; – угловое ускорение плоской фигуры. У вектора постоянный модуль, следовательно, его производная по времени выражается в форме
.
Объединяя полученные результаты, получаем
.
Рассуждения, аналогичные тем, которые проведены для скорости , позволяют сделать вывод о том, что
, ,
т. е. , являются соответственно касательным и нормальным ускорениями от вращения плоской фигуры вокруг точки . Следовательно,
.