Свойства волн де Бройля

Рассмотрим движение электрона, движущегося по инерции в отсутствие внешнего силового поля. Этому движению (движению свободного электрона), в соответствии с гипотезой де Бройля, соответствует волна с длиной:

Свойства волн де Бройля - student2.ru

Назовем ее электронной волной. Введем волновой вектор Свойства волн де Бройля - student2.ru , модуль которого Свойства волн де Бройля - student2.ru - волновое число. Тогда получим:

Свойства волн де Бройля - student2.ru Свойства волн де Бройля - student2.ru .

Из теории волновых процессов при наличии дисперсии (то есть зависимости исследуемой физической величины от длины волны) следует различать две скорости распространения волны: фазовую Vf и групповую - Ug . При отсутствии дисперсии (в вакууме) эти скорости совпадают.

Свойства волн де Бройля - student2.ru Если мы имеем монохроматическую волну, рис.21, распространяющуюся в бесконечность, то фазовая скорость - это скорость с которой движутся точки волны с одинаковой фазой (например М1 и М2).Фазовая скорость – чисто математическое понятие и не характеризует переноса энергии и массы, а характеризует перенос состояния. Фазовая скорость – характеристика монохроматической волны. Однако в природе чисто монохроматических волн не существует.

Даже атом, переходя из возбужденного состояния в нормальное и, излучая цуг волн, имеет этот цуг в виде набора волн с различной длиной. Волны распространяются в пространстве цугами. Для рассмотрения волновых процессов используется представление их в виде групп волн, или волнового пакета. За скорость распространения несинусоидальной волны принимают скорость Свойства волн де Бройля - student2.ru перемещения точки М, в которой амплитуда А имеет какое-либо фиксированное значение. Из теории волновых процессов известно: Свойства волн де Бройля - student2.ru . Тогда:

Свойства волн де Бройля - student2.ru . Поскольку Свойства волн де Бройля - student2.ru , то Свойства волн де Бройля - student2.ru .

Казалось бы это противоречит постулату специальной теории относительности о предельности скорости света. Однако этот постулат справедлив лишь для процессов, связанных с переносом массы и энергии. Этот перенос характеризуется групповой скоростью.

Свойства волн де Бройля - student2.ru , т.е. Свойства волн де Бройля - student2.ru

для свободной частицы, как известно:

Свойства волн де Бройля - student2.ru , тогда: Свойства волн де Бройля - student2.ru

следовательно, групповая скорость волн де Бройля равна скорости частицы.

После обнаружения волновых свойств у частиц была сделана попытка рассматривать частицы как волновые пакеты сколь угодно малой протяженности и, таким образом, "освободиться" от двойственности свойств частиц. Это как будто соответствовало тому, что частица локализована в данный момент в определенной области пространства и групповая скорость распространения максимальной амплитуды "узкого" пакета совпадает со скоростью частицы. Однако:

Свойства волн де Бройля - student2.ru

зависит от длины волны, следовательно, обладает дисперсией. В этом случае время "расплывания" пакета для электрона составляет 10 -28 сек.

С равномерно и прямолинейно движущимися частицами, как известно не связано излучение электромагнитных волн. Волновые же свойства электрона проявляются и при их равномерном движении. Следовательно: волны де Бройля, связанные с движущимися частицами вещества, имеют специфическую квантовую природу, не имеющую аналогии в классической физике.

Вопрос о природе волн, связанных с частицами вещества, можно сформулировать как вопрос о физическом смысле амплитуды этих волн. Вместо амплитуды A удобно рассматривать интенсивность волны, пропорциональную квадрату амплитуды - Свойства волн де Бройля - student2.ru , где Свойства волн де Бройля - student2.ru - комплексно сопряженное число (число (а-ib) называется комплексно сопряженным числу (а+ib)).

Из опытов по дифракции электронов следует, что в этих экспериментах обнаруживается неодинаковое распределение электронов, отраженных или рассеянных по разным направлениям. С волновой точки зрения наличие максимумов означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Интенсивность волн в данной точке пространства определяет число электронов, попавших в эту точку за 1 секунду. Следовательно: квадрат модуля амплитуды волн де Бройля в данной точке является меройвероятности того, что частица обнаруживается в этой точке.

Для определения распределения вероятности нахождения частицы в данный момент времени в некоторой области пространства вводится функция Свойства волн де Бройля - student2.ru - волновая (или ПСИ-) - функция. Определим ее следующим образом:

Вероятность Свойства волн де Бройля - student2.ru того, что частица находится в элементе объема Свойства волн де Бройля - student2.ru :

Свойства волн де Бройля - student2.ru

Физический смысл имеет не сама волновая функция а квадрат ее модуля Свойства волн де Бройля - student2.ru имеющий смысл плотности вероятности:

Свойства волн де Бройля - student2.ru

т.е. Свойства волн де Бройля - student2.ru определяет вероятность пребывания частицы в данной точке пространства. Иными словами: величиной квадрата модуля волновой функции определяется интенсивность волн де Бройля .

Из определения волновой функции следует, что она должна удовлетворять условию нормировки вероятностей:

Свойства волн де Бройля - student2.ru .

Для одномерного случая:

. Свойства волн де Бройля - student2.ru

Это означает, что пребывание частицы где-либо в пространстве есть достоверное событие и вероятность его должна быть равна единицы.

Наши рекомендации