Скорость и ускорение точки в криволинейных координатах
Положение точки в пространстве в декартовой системе координат определяется тремя координатами: . Можно выбрать другие три параметра и назвать их криволинейными или обобщенными координатами точки. Декартовы координаты будут зависеть от криволинейных:
, , .
Движение точки в криволинейных координатах задается уравнениями
, , .
Радиус-вектор движущейся точки, начало которого находится в неподвижной точке выбранной системы отсчета для рассматриваемого движения, является функцией как декартовых, так и криволинейных координат, т.е.
.
Выберем точку , в которой криволинейные координаты равны нулю, и рассмотрим зависимость . Получим уравнение в векторной форме координатной линии для , проходящей через точку . Аналогично получаются уравнения координатных линий и , проходящих через точку для координат и .
Через каждую точку пространства можно провести три координатные линии, пересекающиеся в этой точке. Вдоль каждой из координатных линий изменяется только одна криволинейная координата, а две другие сохраняют постоянные значения, соответствующие рассматриваемой точке.
Рассмотрим частные производные . Они как производные от вектора по скалярному аргументу направлены по касательным к координатным линиям, являющимся годографами радиуса-вектора. Введем единичные векторы, направленные по векторам . Эти три единичных вектора называются базисными векторами. Базисные векторы, как и , направлены в каждой точке по касательным к координатным линиям в сторону возрастания криволинейных координат. Направления возрастания и начало отсчета криволинейных координат выбираются при задании движения.
В общем случае базисные векторы могут быть неортогональными. Используя базисные векторы, получаем
, или . (36)
Скалярные величины называются коэффициентами Ламэ.
Для вычисления , учтем, что радиус-вектор через декартовы координаты можно выразить в форме
(37)
где – единичные векторы, направленные по осям декартовой системы координат. Из (37) имеем:
,
и, следовательно:
. (38)
Скорость точки в криволинейных координатах
При движении точки ее радиус-вектор через обобщенные координаты зависит от времени, т.е.
.
По определению скорости и правилу дифференцирования сложных функций имеем
, (39)
где называется обобщенной скоростью точки. Используя (36), из (39) получаем
. (40)
Получено разложение скорости по осям, направление которых совпадает с направлением базисных векторов.
Для величин составляющих скорости по базисным векторам из (40) имеем
. (40')
В случае ортогональности базисных векторов по формуле (40') вычисляются проекции вектора скорости на оси, направленные по базисным векторам. В этом случае для квадрата скорости получаем
.