Движение тел при наличии трения
Существует два основных типа сил трения: сухое трение и вязкое трение.
1. Сухое (внешнее) трение.
Такое трение возникает при относительном перемещении двух соприкасающихся тел.
1) Силы трения покоя и скольжения.
Сила трения покоя равна по величине и противоположно направлена внешней силе
.
Максимальное значение силы трения покоя равно силе трения скольжения и пропорционально силе нормальной реакции, действующей на тело
, .
Коэффициент называется коэффициентом трения. Он зависит от вещества и качества поверхностей тел. Силы трения покоя и скольжения обусловлены взаимодействием молекул, находящихся вблизи поверхности соприкосновения тел. Такое взаимодействие происходит в области малых участков соприкосновения. Участки взаимодействия, или “пятна” составляют порядка 10-3 от полной площади соприкосновения. Их общая площадь пропорциональна силе давления или нормальной реакции. Поэтому сила трения скольжения пропорциональна и не зависит от площади соприкосновения тел.
Силы трения покоя и скольжения приводят к целому ряду практически важных явлений.
Явление застоя
Такое явление возникает, если на тело действует упругая сила, пропорциональная смеще-нию. При условии тело может занять любое положение. Оно практически никогда не остановится в среднем положении, определяемом условием . Явление застоя может приводить к неправильным показаниям измерительных приборов, содержащих удерживающие пружины.
Явление заноса
Пусть некоторое тело покоится на наклонной плоскости с углом наклона . В этом случае . Если заставить тело скользить поперек наклонной плоскости, оно начнет соскальзывать вниз, так как в этом случае исчезнет сила трения покоя, а сила трения скольжения в начальный момент будет направлена против скорости. Исчезновение силы трения покоя в направлении, перпендикулярном скорости, называется явлением заноса. Оно проявляется при резком томожении автомобиля, когда исчезает сила трения покоя в попе-речном направлении и автомобиль “заносит”.
2) Трение качения
Если тело цилидрической или сферической формы без скольжения катится по твердой поверхности, то появляется другой тип силы трения – трение качения. Причина ее возникно-вения связана с пластической деформацией поверхности и соответствующим наклоном силы
, действующей на тело. Ее можно разложить на горизонтальную составляющую и вертикальную составляющую (рис. 1). Из опытных данных следует закон
,
где - коэффициент трения качения, - радиус тела. Для одинаковых материалов , то есть .
Это свойство использутся в подшипниках для уменьшения трения во вращающихся деталях машин.
2. Вязкое (внутреннее) трение.
Этот вид трения обусловлен взаимодействием молекул жидкости или газа при движении в них тела. При малых скоростях движения из опыта следует закон
.
Коэффициент вязкого трения зависит от свойств тела и той среды, в которой оно движется. При больших скоростях зависимость от скорости становится квадратичной
.
Что понимается в этих законах под малыми и большими скоростями мы обсудим в дальней-шем при рассмотрении явлений гидродинамики.
В качестве примера движения тела при наличии вязкого трения рассмотрим задачу о движении тела в вязкой среде под действием постоянной силы . Второй закон Ньютона в проекции на направление действия силы имеет вид:
.
Очевидно, сила может ускорять тело лишь до пре-дельной скорости . Разделяя переменные и проводя интегрирование, получаем зависимость скорости тела от времени
,
где - начальная скорость тела, - характерное время достижения скорости .
ЛЕКЦИЯ 11
Гармонические колебания. Физический маятник.
Периодическое движение – через равные промежутки времени (период ) движение повторяется.
Гармоническое колебание материальной точки – координата точки изменяется по гармони-ческому закону
.
Здесь - амплитуда колебания, - круговая (циклическая) частота, , - частота, - фаза колебания, - начальная фаза.
Скорость материальной точки, совершающей гармоническое колебание:
.
Исодя из этого выражения, можно говорить, что при гармоническом колебании скорость опережает по фазе координату на .
Ускорение колебательного движения:
.
Таким образом, мы приходим к уравнению осциллятора
, (1)
составлющему основу теории колебаний (производная обозначена точками).
Собственные колебания возникают за счет собственных сил, существующих в самой системе. Частота таких колебаний называется собственной частотой.
Пример. Пружинный маятник.
, . Значит собственная частота , .
Полная энергия материальной точки при гармонических колебаниях:
.
Средние за период значения кинетической и потенциальной энергии:
, .
Таким образом, при гармонических колебаниях
(частный случай общей теоремы вириала).
Математический маятник – тело, подвешенное на невесомой нерастяжимой нити, размер которого намного меньше длины нити.
Физический маятник – тело, закрепленное на оси, расположенной выше центра масс.
Основной закон вращательного движения для такого тела
( ). Преобразуем его к виду (1)
.
Тогда , - период колебаний физического маятника.
Если размеры тела малы по сравнению с расстоянием (материаль-ная точка), то и мы приходим к известной формуле для периода математического маятника
.
Приведенная длина физического маятника – это длина математического маятника с тем же периодом колебаний, что и у физического. Приравнивая выражения для периодов, получим
.
Обозначим через точку, лежащую на продолжении отрезка и отстоящую от точки подвеса на расстоянии . Точка называется центром качаний физического маятника. Можно показать, что физический маятник обладает следующим важным свойством: если физический маятник подвесить за центр качаний, то период его колебаний не изменится.
ЛЕКЦИЯ 12
Затухающие и вынужденные колебания. Резонанс.
В любой колебательной системе со временем происходит затухание колебаний, обусловлен-ное потерей энергии под действием неконсервативных сил. Рассмотрим затухание колеба-ний материальной точки под действием силы вязкого трения (лекция 10)
.
В этом случае 2-ой закон Ньютона для материальной точки под действием возвращающей сил и силы трения в проекции на ось можно представить в виде
. (1)
Коэффициент необязательно должен иметь смысл коэффициента жесткости. Он может описывать возвращающую силу любой природы.
Можно показать, что при условии решение уравнения (1) имеет вид
,
где - начальная амплитуда колебаний, - коэффициент затухания, - частота затухающих колебаний, - собственная частота.
Функция представляет собой амплитуду затухающих колебаний (рис. 1). Для характеристики скорости затухания колебаний вводится логарифмический декремент затухания
.
Затухающие колебания существуют при выполнении условия . При имеет место апериодический процесс, при котором точка возвращается в положение равновесия, не совершив ни одного колебания.
Вынужденные колебания
Рассмотрим колебания материальной точки при наличии периодической внешней силы
,
действущей вдоль оси . Уравнение движения в этом случае принимает вид:
, или в приведенном виде
. (2)
Уравнение (2) называется неоднородным дифференциальным уравнением 2 – го порядка, а уравнение (1) соответствующим ему однородным уравнением.
В теории дифференциальных уравнений доказывается следующая теорема.
Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения.
Общее решение однородного уравнения:
, где . (3)
Частное решение неоднородного уравнения будем искать в виде:
. (4)
Следует отметить, что амплитуда и фаза в этом решении уже не определяются лишь начальными условиями как в свободных колебаниях, а зависят от параметров колебательной системы. Подставляя решение (4) в уравнение (2), можно получить следующие выражения для и
, .
Общее решение уравнения (2) является суммой решений (3) и (4). При решение (3) станет пренебрежимо малым и установятся вынужденные колебания вида (4). По этой причине величина называется временем установления колебаний.
На рис. 2 приведена зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы . Амплитуда имеет максимальное значение при
.
Это явление резонанса вынужденных колеба-ний. С ростом коэффициента затухания реонансная частота и резонансная амплитуда уменьшаются. В отсутствие затухания ( ) и . Физически это происходит из-за того, что в колебательную систему непрерывно поступает энергия за счет работы внешней силы, а потери энергии отсутствуют.
При амплитуда . Величина называется добротностью колебательной системы.
ЛЕКЦИЯ 13