Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений

Кинематографическим методом выявлены фазы бега, или цикл движений, начинающийся касанием одной из ног земли и продол­жающийся до тех пор, пока эта же нога вновь не коснется земли (см. рис. 15.23). Каждый цикл включает фазу опоры на одну ногу и фазу маха (т. е. возвращение ноги вперед), когда тело не опирает­ся на эту ногу.

На рис. 15.23, б показан полный двигательный цикл. Он начина­ется в момент отталкивания правой ногой (А) и заканчивается в положении (Д), когда левая нога снова покидает землю. Момент постановки и отталкивания используются для выделения раз­личных фаз бегового цикла.

При умеренных скоростях бега мах ногой длится примерно втрое дольше, чем опорный период (C.J. Dillman, 1970; D. Slocum, S.L. James, 1968). В течение фазы возвращения вперед имеется два периода, ко­гда тело находится в воздухе: один — непосредственно после отрыва данной конечности, и второй — следующий за отрывом от земли про­тивоположной ноги.

Опорный период (Б). Период опоры (от Б до В), при котором тело продолжает двигаться вперед. В последней стадии фазы опо­ры (В) тело снова выталкивается вперед. Второй безопорный пе­риод заканчивается, когда правая нога касается земли (Г) и затем тело поворачивается относительно опорной ноги до тех пор, пока она не отталкивается от земли, давая начало новому циклу бега.

От скорости бега зависит, какая часть ступни первой касается земли. Так, кинематографический анализ бега показывает, что при малых скоростях нога ставится на опору с пятки или на всю ступ­ню, а при более высоких скоростях опора начинается с латераль­ной стороны ступни.

Движение в суставах опорной конечности, определяемых кине­матографическим методом свидетельствуют, что немедленно после контакта ступни с землей в течение короткого промежутка време­ни в коленном суставе продолжается сгибание, а в голеностопном происходит тыльное сгибание. Когда центр тяжести (ЦТ) обгоняет опорную ногу и опорное бедро наклоняется вперед от вертикали, голеностопный сустав сгибается, а в коленном и тазобедренном суставах происходит разгибание, в результате чего ЦТ продвига­ется в направлении вверх и вперед.




Отмечено (D.B. Slocum, S.L. James, 1968),что в опорной фазе точкой опоры рычажной системы нижней конечности является по­ясничный отдел позвоночника.

Период опоры при увеличении скорости бега значительно умень­шается. В опорном периоде выделяют фазы амортизации и отталки­вания. В фазе отталкивания суставы опорной ноги разгибаются. При беге выявлены вертикальные колебания тела, которые носят волно­образный характер (по движениям головы, таза, центра тяжести).

Отмечено, что в период опоры ЦТ снижается, а в фазе отталки­вания — поднимается. Вертикальное снижение во время периода опоры не такое большое, как вертикальное падение в фазе полета.

Маховое движение ноги (В). Анализ бега спринтеров показы­вает, что когда маховая конечность движется вперед, то сгибание колена и пронос пятки выполняются бегуном ближе к тазу. Второй характерной чертой является высокий подъем колена;'бедро пово­рачивается до горизонтали перед телом в момент, когда противопо­ложная опорная нога покидает землю (F.C. Clouse, 1959; J.Dittmer, 1962;W.O. Fenn, 1931; D. Slocum, S.L. James, 1968 и др.). Угол между бедром и горизонталью, проведенной через тазобедренный сустав, становится меньше, когда бедро поднимается ближе к горизонтали.

Движение ноги при беге можно разделить на две фазы. Во вре­мя контакта с землей нога поддерживает тело и выталкивает его вперед. После отталкивания нога движется из положения сзади в положение впереди туловища — эта фаза маха (переноса) или фаза возвращения ноги.

Когда стопа касается земли, суставы ноги (тазобедренный, ко­ленный, голеностопный) кратковременно сгибаются, амортизируя приземляющееся тело. Как только тело продвинулось достаточно вперед, конечность разгибается, двигая тело вверх и вперед.

Длительность сгибания и разгибания колена во время периода опоры уменьшается при увеличении скорости. Обнаружено, чтово время опоры высококвалифицированные бегуны полностью и быстро разгибают тазобедренный сустав, делая это раньше, чем стопа покидает землю (точку опоры, место отталкивания).

Обнаружено, что при максимальном проталкивании высококва­лифицированный спортсмен выносит коленный сустав маховой но­ги вверх-вперед тела.

В начале фазы маха, когда бедро быстро сгибается в тазобед­ренном суставе, происходит также быстрое сгибание голени в ко­ленном суставе.

Длина и частота шага (Г). Поскольку скорость бега равна произведению длины на частоту шагов, C.J. Dillman (1970) отме­тил, что длина шага от отрыва правой ноги до отрыва левой ноги во всех случаях превышала 192 см.

Частота шага увеличивается со скоростью бега и она выше в короткий период начального ускорения, чем при беге на дистан­ции. Но линейная зависимость между частотой шага и скоростью бега наблюдается лишь до скорости примерно 6,1 м/с, увеличение скоро­сти за этой точкой происходило больше за счет частоты, чем длины шага (W. Fenn, 1930; P. Hogberg, 1952; R. Osterhoudt, 1969 и др.).

G.H. Dyson (1971) показал, что частота шага соревнующихся спортсменов высокого класса меняется в пределах 4,5—5,0 шагов в секунду.

На рис. 15.24 показана связь между длиной одиночного шага и скоростью бега. Кривая рисунка показывает, что при низких ско­ростях (3,5—6,5 м/с) длина шага увеличивается практически ли­нейно по мере того, как дискретно растет скорость. При больших

скоростях по мере того, как бегун дискретно увеличивает скорость бега, длина одиночного шага меняется относительно мало, а неко­торые исследователи сообщают о небольшом уменьшении длины шага при максимальных скоростях (пунктирная линия на рис. 15.24). С ростом скорости частота одиночных шагов увеличива­ется. На рис. 15.25 показана зависимость между частотой шагов и скоростью. В зоне низких скоростей (3—б м/с) отмечается не­большое увеличение частоты шагов по мере дискретного возрас­тания скорости. Если же скорость увеличивается от умеренно быст­рой до максимальной (6—9 м/с), наблюдается пропорционально большее увеличение частоты шагов.

Наблюдения показывают, что при одной и той же скорости лучшие бегуны имеют более низкую частоту шагов.

Вертикальные движения центра тяжести (ЦТ) (Д). Центр тяжести (ЦТ) тела при беге движется по волнообразной колеба­тельной кривой (М.С. Beck, 1966; F.С. Clause, 1959 и др.). С увели­чением скорости бега величина подъема тела, или вертикальное



Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

перемещение ЦТ, становится меньше, тогда как горизонтальное перемещение увеличивается. ЦТ движется вверх, пока нога вы­прямляется в фазе опоры, и достигает максимальной высоты в момент отрыва от земли непосредственно после нее. Затем ЦТ движется вниз и вперед, достигая низшей точки непосредственно после ка­сания земли опорной ноги (см. рис. 15.23, a). W.O. Fenn (1930) нашел, что общий подъем ЦТ у взрослых спринтеров-мужчин за время опоры равен примерно 6 см.

Положение туловища (Е). Наклон корпуса способствует более сильному проталкиванию вперед, вот почему спринтеры стартуют с колодок и низкого старта (рис. 15.26). Наклон туловища у ряда вы­дающихся спринтеров по данным R. Wickstzom (1970) лежал в пре­делах 12—20° с тенденцией уменьшения (см. рис. 8.8, 8.9).

М. Gagnon (1969) определил, что лучшее время на первых 2,3 и 5,5 метра от стартовой линии достигалось в том случае, когда соответствующие расстояния были предельно малыми. Располо­жение центра тяжести в стартовой позиции возможно ближе к стартовой линии оказалось фактором, наиболее тесно связанным со временем, требующимся на преодоление первых 5,5 м. R.A. Des-rochers (1963), М. Gagnon (1969) обнаружили, что различия в рас­положении колодок влияют на длину и длительность первого ша­га, но не последующих.

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Кинематические факторы бега. Факторы, влияющие на ско­рость бега, разнообразны. Так, при беге на короткие дистанции важным является стартовое ускорение и поддерживание макси­мальной скорости до конца бега. А при беге на длинные дистанции спортсмен должен бежать со скоростью, которая обеспечит ему возможность сохранить достаточно энергии, чтобы закончить дис­танцию.

При беге с определенной скоростью спортсмен выбирает опре­деленную длину и скорость одиночных шагов, так что комбинация этих двух величин создает (определяет) желаемую скорость.


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Результаты этих исследований свидетельствуют, что имеется выраженная корреляция между ростом, длиной ноги и величиной одиночного шага.

Возрастная биомеханика. Возрастные локомоции. У ново­рожденных двигательный аппарат имеет определенную степень зрелости, что позволяет выполнять целый ряд простейших движе­ний (рис. 15.27).

В первые недели жизни у ребенка появляются условные рефлек­сы, которые отличаются крайней непрочностью, слабостью, и при­обретают относительное постоянство лишь к 3—4 месяцам.

Нарастание тонуса затылочных мышц позволяет двухмесячному ребенку, положенному на живот, поднимать голову. К 2,5—3 ме­сяцам начинается развитие движений рук в направлении к видимо­му предмету (игрушке), а к 5—6 месяцам ребенок точно протяги­вает руку к предмету, с какой бы стороны он ни находился.

В 4 месяца развиваются движения перевертывания со спины на бок, а в 5 месяцев — на живот и с живота на спину.

В возрасте 4—6 месяцев ребенок ползает, в положении на жи­воте поднимает голову и верхнюю часть туловища.

В 6—7 месяцев начинает вставать на четвереньки. С развитием мышц туловища и таза ребенок в возрасте 6—8 месяцев начинает сидеть и делает попытки вставать, стоять и опускаться, придер­живаясь руками за опору.

В период подготовки к ходьбе анатомо-физиологические особен­ности ребенка затрудняют процесс овладения равновесием: мы­шечная система нижних конечностей еще слаба, ножки короткие и полусогнуты; общий центр тяжести (ОЦТ) располагается более высоко, чем у взрослого человека; стопы также меньше, чем у взрослого. Поэтому в период обучения ходьбе очень важно помочь ребенку в поддержании равновесия. К концу первого года ребенок свободно стоит и, как правило, начинает самостоятельно ходить. Началом самостоятельной ходьбы можно считать тот день, когда ребенок впервые пройдет несколько шагов. Но в этот период устой­чивость его при ходьбе и прямостоянии незначительна. Равновесие ему удается сохранять, балансируя руками, разведенными в сто­роны и широко расставленными ногами.

К 3—4 годам совершенствуется координация движений, что по­зволяет ребенку при ходьбе и стоя сохранять равновесие, не при­бегая к помощи рук.

В возрасте 4—5 лет ребенку доступны разнообразные и сложные по координации движения: бег, прыжки, гимнастические и акроба­тические упражнения, катание на коньках и т. д. В этом возрасте ре­бенок осваивает и более точные движения, связанные с развитием мелких мышц кисти, предплечья и т. д.

К 6—7 годам заметно увеличивается сила мышц разгибателей туловища, бедра и голени. Важнейшим в формировании двигатель­ных факторов является ходьба, игры, бег и сочетание ходьбы с бе­гом, прыжками.

В возрасте 5—8 лет заметно увеличивается точность и меткость движений (метание мяча и других предметов).

В период от 8 до 11 — 12 лет продолжается дальнейшее совершен­ствование двигательных навыков, особенно в беге, ходьбе, прыжках, метании, гимнастических и акробатических упражнениях.

Вместе с тем у школьников по сравнению с дошкольниками, уве­личивается время вынужденной неподвижности (гиподинамия). На этом этапе важной является роль активных движений как фактора здоровья (бег, игры, ходьба на лыжах, плавание и другие виды ло-комоций).

Показано, что у дошкольников и младших школьников при уве­личении возраста и скорости бега в фазе отталкивания увеличива-ется скорость выпрямления опорной ноги, а при более высокой скорости характерны также большой угол разгибания в коленном суставе и большее продвижение тела вперед от опорной ноги в мо­мент отрыва ее от земли. С возрастом, особенно у лиц преклонно­го возраста, эти показатели значительно меняются.

Центр тяжести (ЦТ) при беге движется по волнообразной ко­леблющейся кривой. С увеличением возраста величина подъема тела или вертикальное перемещение ЦТ, становится меньше, то­гда как горизонтальное перемещение увеличивается.

Отмечены также возрастные изменения временной структуры шага; в частности, до 30 лет время опоры немного и постепенно увеличиваются, а затем остается приблизительно постоянным (K.U. Smith et al., 1960; K.U. Smit., D. Greene, 1962). У пожилых людей, занимающихся бегом, полного разгибания в тазобедренном и коленном суставах до завершения отталкивания не происходит. Кроме того, маховая нога выносится вперед незначительно, бегун держит ее вблизи опорной ноги.

Энергетический обмен при ходьбе и беге (рис. 15.28). Организм получает энергию из окружающей среды в виде потенциальной

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

энергии, заключенной в химических связях молекул жиров, углево­дов и белков. В результате сложных окислительных процессов обра­зуется энергия.

Выявлено, что 80% энергии, используемой при мышечной дея­тельности, теряется в виде тепла из-за малой эффективности ее превращения, и только 20% превращается в механическую работу.

Мышечная работа существенно изменяет интенсивность обмена. Так, у спортсменов при кратковременных интенсивных упражнениях, выявлено увеличение метаболизма в 20 раз по

Для того чтобы КПД был высоким, скорость движения весел не должна быть намного больше скорости движения лодки. Форма весла должна обеспечивать большое лобовое сопротивление при малой скорости. Быстрые гребные лодки имеют обтекаемую фор­му, но весла у них с широкой, плоской лопастью, которую держат перпендикулярно траектории ее движения в воде, чтобы сделать возможно большим лобовое сопротивление. Величина d' должна быть малой. Для возвратного движения гребцы поднимают весла над водой, так как сопротивление воздуха гораздо меньше, чем при той же скорости в воде. Чтобы еще больше снизить d', лопасти весел поворачивают в горизонтальное положение.

Плавание

При плавании все части тела вовлекаются в движение. Пла­вание основано на взаимодействии пловца с водой, при котором создаются силы, продвигающие его в воде и удерживающие на ее поверхности.

Биомеханика плавания связана с тем, что силы, тормозящие продвижение, значительны, переменны и действуют непрерывно. «Опора» на воду создается во время гребковых движений и оста­ется переменной по величине.

Спортивное плавание включает четыре вида: вольный стиль (кроль), плавание на спине, брасс, баттерфляй.

Вольный стиль (рис. 15.30). Продвижение вперед происходит постоянно за счет смены работы рук и ног. Руки действуют под водой для продвижения вперед, а противоположное движение — вынос рук вперед — происходит над водой. Движение кисти под водой происходит без сильного отклонения в сторону при слегка согнутой руке. Оно заканчивается, когда рука выходит из воды у бедер. Затем без остановки рука переносится вперед и снова включается в эффективную работу перед плечом. Движения ног — вверх-вниз представляет собой малый тормозящий момент. Движение начинается от таза и продолжается через бедро, ко­ленный сустав, голень, голеностопный сустав вплоть до пальцев ног. При ударе вниз стопа поворачивается внутрь для повышения эффективности отталкивания.

Плавание на спине (рис. 15.31). Тело выпрямлено, плечевой по­яс лежит несколько выше таза, голова слегка подтянута к груди.

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Рис. 15.30.Плавание вольным стилем (а, б, в). Старт в плавании вольным стилем (а): 1. Исходное положение: лицо пловца обра­щено вперед; плечи — над коленями, колени — над пальцами ног; положение рук вариативно. 2. Вылет со стартовой тумбочки. 3. Тело в полете вытянуто, голова ме­жду руками. 4. Тело под небольшим углом входит в воду. 5. Ноги начинают движе­ние в тот момент, когда достигнута максимальная скорость от прыжка. 6. Руки начинают гребковые движения, поддерживая максимальную скорость. 7. Через не­сколько гребков начинается дыхание. Движения ногами в кроле (б). На верхнем рисунке правая нога выполняет удар, а левая выходит в исходное положение для удара. На среднем рисунке удар выполняет левая нога. Сила отталкивания направ­лена, как показывают стрелки, не вниз, а назад. Нижний рисунок демонстрирует положение пловца при плавании с помощью ног с доской. Руки вытянуты вперед, пальцы положены на доску сверху, пловец лежит в воде, как при плавании кролем, что создает большую нагрузку для ног. в: Дыхание в кроле. На верхнем рисунке по­казано начало вдоха в тот момент, когда левая рука вошла в воду. Голова опущена и ее ось является продолжением оси тела. Средний рисунок иллюстрирует поло­жение головы в сочетании с движением правой руки. Нижний рисунок показывает, как быстро лицо поворачивается в воду после окончания вдоха


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Движения рук. К началу подводного движения, продви­гающего тело пловца вперед, руки находятся на поверхности воды в выпрямленном положении над плечом. Кисть — в положении отталкивания. Руки начинают подтягивать, при этом они слегка согнуты в локтевом суставе. В конце движения под водой руки опять почти выпрямлены. Во время всей работы в воде кисть про­водится на глубине 20—30 см. Рука переносится над водой и, опус­каясь в нее, начинает новую рабочую фазу. Ритм смены рук здесь отличается от кроля. В то время как одна рука совершает движе­ние под водой, другая производит маховое движение над водой и затем погружается в воду.

Движения ног. Ноги совершают поочередно удары вверх и вниз. Здесь стопа по мере надобности разворачивается внутрь во время удара вверх с тем, чтобы повысить действенность оттал­кивания. Амплитуда движения составляет 30—50 см.

Брасс (рис. 15.32). Брасс — самый медленный стиль из четы­рех спортивных способов плавания. Это объясняется прежде всего тормозящими моментами, возникающими при вынесении рук впе­ред, а также слабо выраженным подводным движением.

Движения рук. Из вытянутого положения руки симмет­рично разводятся в стороны и несколько вниз; при этом внутрен­ние поверхности кистей, развернутые во внешнюю сторону и слегка закругленные, действуют как весла. Примерно на уровне плеч руки делают легкий мощный толчок внутрь, подводятся близко к груди и широко разводятся вперед.

зону выполнения гребка. Движения ногами при плавании на спине (б) — нога движется вверх в согнутом положении, вниз — выпрямленная. Ноги выполняют движения несколько глубже, чем при плавании кролем на груди. Вид спереди и сза­ди (в) — верхний рисунок показывает гребок левой рукой и пронос правой. Средний и нижний рисунки показывают согнутое положение руки в гребке; рука проводится близко к поверхности воды. Старт (д): 1 — наиболее распространенные исходные положения на старте: а) стопа одной ноги стоит выше другой; б) обе стопы нахо­дятся на одном уровне. Первое положение более удобно и надежно. 2. Отталкива­ние от стенки с активным движением головой. Руки выполняют мах через стороны или над головой. 3. В конце полета тело почти прямое, голова отклонена назад. 4. Голова слегка поднимается для регулирования глубины скольжения. 5. Ноги начинают движения, после чего включаются руки. Обычный скоростной поворот на спине (г): 1 — Правая рука касается стенки. 2. Голова опускается вниз; ноги сгиба­ются для повышения скорости поворота; правая рука касается стенки на глубине 50—60 см; левая поддерживает равновесие. 3. Пловец проносит ноги по воздуху к стенке. 4. Пловец готов к отталкиванию. 5. Спортсмен отталкивается, слегка на­правляя тело к поверхности воды


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Движения ног. Из вытянутого положения голени одновре­менно и симметрично подводятся к тазу, при этом колени и пятки несколько разведены, ступни развернуты наружу и подтянуты к большой берцовой кости. Из этого положения, при котором пятки находятся на расстоянии 30—40 см от таза, производится широ­кий толчок разведенными ногами в стороны. При этом особенно сильно отталкиваются голенями и подошвами ступни. В затухаю­щей фазе движения ноги опять сводят вместе и выпрямляют.

Баттерфляй (рис. 15.33). Плавание баттерфляем выполняет­ся с помощью порхающих над водой рук одновременно с движе­ниями ног и корпуса, которые напоминают движения хвостовых плавников дельфина. К началу подводного движения обе руки на­ходятся впереди плеч; они подводятся под туловище одновременно. После того, как кисти обеих рук выносятся из воды в сторону от бедер, руки как можно более напряженно вновь выводятся вперед до очередного погружения.

Движение ног начинается в поясничной части. Для уве­личения силы отталкивания при ударе вниз стопы повернуты внутрь, а при ударе вверх опять становятся продолжением голени.

Плавучесть точно так же как сила, обусловленная весом тела, приложена к его центру тяжести (ЦТ), подъемная сила, обуслов­ленная весом вытесненной им жидкости, приложена к точке, на­зываемой центром плавучести.

гребок. Голова поднята для вдоха. 4. Руки закончили гребок. Голова в высоком поло­жении. Ноги готовы начать отталкивание. 5. Ноги заканчивают отталкивание. Руки вытянуты, голова опущена. Обратите внимание на высокое, близкое к поверхности воды положение ног. 6. И снова исходное положение. Движение руками в брассе (вид спереди) (б). На двух верхних рисунках — положение рук перед началом греб­ка. На следующих двух показан гребок с высоким положением локтя. Нижний рису­нок иллюстрирует положение рук перед их выведением вперед. Движения ногами в брассе (в): 1. Положение перед началом подтягивания ног. 2. Начинается подтя­гивание ног. Стопы все еще вместе, расстояние между коленями больше, чем меж­ду стопами. 3. Ноги подтянуты полностью. Стопы развернуты в стороны для того, чтобы увеличить площадь отталкивания. Начинается толчок назад. 4. Вид сбоку иллюстрирует фазу подтягивания ног. Обратите внимание на высокое положение коленей. Поворот в брассе (г): 1. Руки касаются стенки на уровне воды. 2. Тело раз­ворачивается. 3. Пловец готов к отталкиванию. 4. Отталкивание от стенки; тело вы­тянуто. 5 и 6. Руки выполняют длинный гребок до бедер. 7. Начинается выведение ног и рук в исходное для гребка положение. 8. После отталкивания ногами тело вы­ходит на поверхность воды. 9. Начинается гребок руками


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

При движении в жидкости твердого тела (например, шара) бли­жайший слой жидкости прилипает к нему и движется вместе с ним; остальные слои скользят друг относительно друга. Сила, действующая на твердое тело, движущееся внутри вязкой среды (жидкость), и на­правленная противоположно скорости тела, называется сопро­тивлением среды.

Если при движении тела за ним не возникает завихрения, то сопротивление среды пропорционально скорости тела v. В част­ном случае при движении шара радиусом R сопротивление среды


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Число Рейнольдса удобно выражать как---- , где У = — — ве­
личина, называемая кинематической вязкостью.

Во многих случаях трудно измерять силы, которые действуют на тело, движущееся в жидкости. В этой связи для экспериментов используют аэродинамические и гидродинамические трубы.

Лобовое сопротивление. При движении какого-нибудь тела в жидкости, на него действует сила, задерживающая его движе­ние. Эту силу называют лобовым сопротивлением. Величина ее зависит от природы жидкости и от размеров, формы и скорости движущегося тела.

Как показали эксперименты в аэродинамических трубах, лобо­вое сопротивление тела или различных тел одной и той же формы

можно определить по формуле Д = - рц2АСд, где Д — лобовое со-

противление, р — плотность жидкости, и — скорость движения жидкости относительно тела, А — характеристическая площадь и Сд — величина, называемая коэффициентом лобового сопротив­ления, которая зависит от формы тела и от числа Рейнольдса.

К сожалению, не существует единого определения А, которое было бы удобным при любой форме тела. Используются следую­щие площади:

1) лобовая площадь, т. е. площадь проекции тела на плоскость, перпендикулярно направлению потока. В случае цилиндра, имею­щего высоту h и радиус г, лобовая площадь будет равна лг2, если ось цилиндра параллельна потоку, и 2rh, если она перпендикуляр­на ему;

2) площадь наибольшей проекции, т. е. проекции по тому направ­лению, по которому площадь ее будет наибольшей; эту величину используют, когда имеют дело с обтеканием профиля крыла; по сравнению с лобовой площадью она имеет то преимущество, что не изменяется при наклоне профиля;

3) суммарная поверхность тела. Следует помнить, что в случае тонкой пластинки это будет суммарная площадь обеих ее сторон.

Если есть сомнения, то важно указать, какая именно из этих площадей была использована при вычислении коэффициента Сд.

На рис. 15.34 приведены кривые зависимости коэффициента лобо­вого сопротивления Сд от числа Рейнольдса для тел различной формы.

Все коэффициенты были вычислены на основе лобовой площади.

Число Рейнольдса для всех тел, кроме диска, определялось обычным способом по длине, измеренной в направлении потока; для диска же его определяли по диаметру, хотя он расположен пер­пендикулярно потоку.

В связи с отсутствием работы по лобовому сопротивлению у пловцов, мы приводим данные T.G. Lang, K.S. Norris (1966),R. Alexander (1968) полученные при изучении дельфинов. Было найдено, что при коротких «бросках» дельфин может развивать скорость до 830 см/с (около 16 узлов), а со скоростью 610см/с (около 12 узлов) способен плыть примерно в течение 1 мин. Дель­фин (Turbiopsgilli) имел длину 191 см, так что число Рейнольдса при первой из этих скоростей составляло 830-191/0,01= 1.6107.Профиль дельфина хорошо обтекаем. Кожа очень гладкая и ли­шена волос. Все указывает на малую величину лобового сопротив­ления.

Попробуем оценить величину лобового сопротивления для дель­фина, плывущего со скоростью 830 см/с и мощность, развивае­мую его мышцами. Лобовая площадь у дельфина длиной 191см,


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

вероятно, составляет около 1100 см2. Коэффициенты лобового сопротивления для обтекаемых тел при числе Рейнольдса около 1,6-107 близки к 0,055. Подставив эти величины в уравнение

Д = — ри2АСд, мы найдем, что лобовое сопротивление у нашего

дельфина составляет примерно 1 /2 (830)211000,055 = 2,0-Ю7 дин. Мощность равна сопротивлению, умноженному на скорость, т. е. в данном случае 8302,0-107 эрг/с, или 1660 Вт. Однако от мышц требуется большая мощность, так как КПД дельфина при плава­нии не может достигать 100%; поэтому она едва ли могла быть меньше 2000 Вт. Дельфин весит 89 кг, из которых на долю участ­вующих в плавании мышц приходится, вероятно, около 15 кг. Таким образом, мощность мышц должна составлять примерно 130 Вт/кг. Это в 3 раза больше максимальной мощности, которую могут раз­вивать мышцы человека при работе на велоэргометре.

Лобовое сопротивление — не единственная гидродинамическая сила, действующая на тела, которые движутся в жидкости или нахо­дятся в потоке. По определению оно имеет то же направление, что и скорость движения жидкости относительно тела. Когда симметрич­ное тело движется вдоль своей оси симметрии, действующая на него гидродинамическая сила направлена прямо и представляет собой ло­бовое сопротивление. Но когда симметричное тело движется под не­которым углом к оси симметрии, гидродинамическая сила действует под углом к его пути. Ее можно разложить на две составляющие, одна из которых направлена назад и представляет собой лобовое сопро­тивление, а другая действует под прямым углом к первой.

Энергетика пловца. Когда человек плывет, он сообщает некото­рое количество энергии воде, чтобы продвинуться (проплыть) в ней. Это создает волну, которая в конечном счете потеряет всю сообщен­ную ей энергию в виде тепла, и поверхность воды снова станет спокой­ной. Затраченная таким образом при плавании энергия представляет собой совершенную работу плюс тепло, потерянное телом пловца.

Лыжный спорт

На лыжных гонках происходит сочетание свободного скольжения, отталкивания лыжами и палками от снега, маховых движений рук и ног и броска (перемещения) тела вперед-вверх (рис. 15.35).


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Свободное скольжение (фаза I) происходит при тормозящем воздействии трения лыжи по снегу и незначительном сопротивле­нии воздуха. Чтобы меньше терять скорость, нельзя делать резких движений (рукой или ногой) направленных вверх-вперед. Свобод­ное скольжение заканчивается постановкой палки на снег.

Начинается фаза скольжения с выпрямлением опорной ноги (фаза II). Увеличивая наклон туловища и нажим на палку лыжник стремится увеличить (повысить) скорость скольжения лыжи.

Подседание начинается еще (уже) при скольжении лыжи (фа­за III), которая при энергичном разгибании опорной ноги в колен­ном и тазобедренном суставах быстро теряет (гасит) скорость и останавливается. Подседание, начатое в фазе III, продолжается и завершается в фазе IV, сопровождаемое выпадом — движением переносной ноги вперед. С окончанием подседания начинается вы­прямление толчковой ноги в коленном суставе (фаза V), сопро­вождаемое завершающимся выпадом.

Следует отметить, что с повышением скорости передвижения изменяется ритм скользящего шага (сокращается время отталки­вания лыжей; подседание и выпрямление толчковой ноги делаются быстрее).

Основой лыжной техники является попеременный шаг с поста­новкой палок при каждом шаге. Он соответствует нормальному бегу, который с помощью лыж переходит в ритмичное скольжение. Толчок к скольжению дается мощным отталкиванием соответствующей но­ги от снежного основания и толчок палками. Отталкивание всегда начинается тогда, когда обе ноги находятся приблизительно рядом. Однако эффективным оно бывает, если лыжа в этот момент имеет достаточное трение со снежным основанием благодаря правильной смазке. В то время как левая нога отталкивается, правая становится скользящей. При этом масса тела переходит с отталкивающейся но­ги на скользящую. Лыжник-гонщик скользит преимущественно на одной лыже. Только во время короткого промежутка отталкивания ногой обе лыжи одновременно касаются снега.

Велосипедный спорт

Велосипедист должен преодолеть три силы сопротивления (рис. 15.36):

— силу сопротивления встречного потока воздуха;

— силу трения качения (см. рис. 6.5, табл. 6.2);

— сталкивающую силу при подъеме на гору.

Внешним силам сопротивления спортсмен противопоставляет силу своих мышц, правильную посадку и пр.

На рис. 15.37, показаны мышцы, работающие в процессе нажи­мания на педали.

Главное препятствие для преодоления дистанции — встречный поток воздуха. Чем выше скорость, тем больше сила сопротивле­ния встречного потока воздуха. Сопротивление воздуха можно уменьшить несколькими способами.

Сила сопротивления воздушного потока FB зависит от следую­щих факторов:

А — величина поверхности сопротивления, которую можно из­менить посадкой;

К, — коэффициент сопротивления, который зависит от обтекае­мости фигуры велосипедиста и от величины поверхности одежды;


Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru
Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru
Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

При встречном ветре эта сила увеличивается, при попутном — уменьшается, что дает уменьшение или увеличение скорости. Для уменьшения силы сопротивления встречного потока воздуха не­обходимо сесть так, чтобы поверхность (А), которую вы занимае­те, была относительно небольшой. В спринте — предпочтительно совершать (принимать) горизонтальную посадку. Для уменьшения сопротивления воздуха используют (применяют) специальные шлемы и обтекаемые костюмы (комбинезоны).

На скорость перемещения велосипедиста влияет сила трения качения (трение шин о покрытие шоссе). Чем тяжелее велосипедист, тем больше трение качения, а также чем толще шины и меньше они накачаны — тем больше трение качения. Влияют на скорость вело­сипедиста также качество покрытия шоссе, размер колес.

Сила трения качения Fт зависит от следующих факторов:

— Fa — нормальная сила соответствует весу спортсмена с ве­лосипедом, если он направлен перпендикулярно к поверхности, по которой происходит перемещение;

— г — радиус колес;

— / — расстояние между теоретической точкой опоры шины и фактической точкой встречи шины с поверхностью, по которой про­исходит перемещение. Отсюда имеем формулу:

Посадка велосипедиста во время шоссейной гонки должна быть максимально обтекаемой и в то же время не мешать работе внут­ренних органов (рис. 15.38). Посадка велосипедиста на подъеме может быть такой: 1) кисти рук на тормозных рычагах; 2) кисти в центре руля, обхватывают его снизу; 3) положение, при котором переносится центр тяжести тела.

Во время подъема скорость небольшая, решающую роль приоб­ретает сталкивающая сила, а сопротивлением встречного воз­душного потока можно пренебречь.

Чем больше вес спортсмена с велосипедом и крутизна подъема (например, при перепаде высот 6 м на 100 м подъема — 6%), тем больше сталкивающая сила.

При выполнении поворота возникает центробежная сила, ве­личина которой зависит от трех факторов: 1) чем больше скорость и вес спортсмена с машиной и чем меньше радиус закругления, тем больше центробежная сила; 2) для противодействия центро­бежной силе следует наклониться вместе с велосипедом в сторону закругления. На рис. 15.39 показаны центробежная сила и направ­ление взаимодействия других сил, возникающих при прохождении виража; 3) в зависимости от формы виража и скорости необходимо наклониться так, чтобы угол между велосипедом и поверхностью трека составлял от 70° до 110°. В идеальном варианте он должен быть равен 90°.

Но в некоторых ситуациях гонщик должен ехать по треку мед­ленно, например, в спринте, парной групповой гонке и т. д. В этих случаях при слишком маленькой скорости можно упасть, так как

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

Временные фазы бега (А). Кинематографическим методом выявлены фазы бега, или цикл движений - student2.ru

колесо соскользнет вниз. При медленной езде или попытке полно­стью остановиться центробежные силы незначительны или даже равны нулю, а значит наклоняться на вираже нельзя.

Преимущество езды сверху заключается в возможности исполь­зовать сталкивающую силу (FJ для значительного увеличения скорости. Сталкивающая сила прямо пропорциональна высоте кри­вой (h) и весу велосипедиста с машиной (G).

Чем тяжелее спортсмен и чем выше располагается он на вира­же, тем больше сталкивающая сила. Преимущество будет на сто­роне гонщика, если при выходе из финишного виража он окажет­ся в верхней его части на одном уровне с соперником.

Прыжки

Наши рекомендации