Динамические законы и теории. Механический детерминизм
Динамические и статические законы.
2. Динамические закономерности
Физические явления в механике, электромагнетизме и теории относительности в основном подчиняются, так называемым динамическим закономерностям. Динамические законы отражают однозначные причинно-следственные связи, подчиняющиеся детерминизму Лапласа.
Динамические законы - это законы Ньютона, уравнения Максвелла, уравнения теории относительности.
Классическая механика Ньютона
Основу механики Ньютона составляют закон инерции Галилея, два закона открытые Ньютоном, и закон Всемирного тяготения, открытый также Исааком Ньютоном.
1. Согласно сформулированному Галилеем закону инерции, тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния.
Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.
Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью или инерцией.Поэтому первый закон Ньютона называют также законом инерции
2. Этот закон устанавливает связь между массой тела, силой и ускорением.
Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела)
Второй закон справедлив только в инерциальных системах отсчета. Первый закон можно получить из второго.
3. Устанавливает связь между силой действия и силой противодействия.
Третий закон Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.
4. В качестве IV закона выступает закон всемирного тяготения.
Два любых тела притягиваются друг к другу с силой пропорциональной массе сил и обратно пропорциональной квадрату расстояния между центрами тел.
Уравнения Максвелла.
Уравнения Максвелла - наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.
Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами
(электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
Уравнения теории относительности.
Специальная теория относительности, принципы которой сформулировал в 1905 г. А.Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые этой теорией - релятивистским эффектом (эффект замедления времени).
В основе специальной теории относительности лежат постулаты Эйнштейна:
принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;
принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения света или наблюдателя и одинакова во всех инерциальных системах отсчета.
Первый постулат, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны
по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления механические, электродинамические, оптические и др. во всех инерциальных системах отсчета протекают одинаково.
Согласно второму постулату, постоянство скорости света в вакууме - фундаментальное свойство природы.
Общая теория относительности, называемая иногда теорией тяготения - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменятся от одной области к другой в зависимости от концентрации масс в этих областях и их движения.
МЕХАНИЧЕСКИЙ ДЕТЕРМИНИЗМ
Детерминисты считают, что все происходящее в мире рассматривается как следствие действия объективных однозначных законов, а случайность является выражением непознанной необходимости. Возникло философское учение механический детерминизм, классическим представителем которого был Пьер Симон Лаплас (1749-1827) - французский математик, физик и философ. Лапласовский детерминизм выражает идею абсолютного детерминизма - уверенность в том, что всё происходящее имеет причину в человеческом понятии и есть непознанная разумом необходимость. Концепция детерминизма по Лапласу, предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности. В мире все объективно предопределено и детерминировано. Не может быть никаких "либо, либо". Будущее также однозначно, как и прошлое. Механический детерминизм объединяет в единое целое такие понятия, как "материя", "информация", "пространство" и "время". Все эти понятия должны рассматриваться как разные проявления единого нечто, которое условно может быть названо абсолютом.
1. Ввиду однозначности динамических законов природы, будущее также однозначно как и прошлое. Не существует никаких случайных событий, случайность - это непознанная необходимость.
2. Время - это средство реализации причинно-следственных связей, а так как причина всегда предшествует следствию, то течение времени всегда однозначно и однонаправлено.
3. Перемещение во времени возможно только от причины к следствию. Поэтому перемещение в прошлое из будущего возможно только в том случае, если это перемещение исключает возможность какого-либо активного вмешательства в течение прошлого.
4. Вместе с тем возможно пассивное перемещение, как в прошлое, так и в будущее, при условии только наблюдения за
происходящим и невозможности активного воздействия на него. Возможно только пассивное созерцание картин происходившего и будущего.
5. Течение времени может происходить в разных координатных системах, не совпадающих друг с другом, однако переход из одной - в другую, не может привести к нарушению причинно-временных связей и однозначности будущего.
Детерминизм- учение о причинной материальной обусловленности природных, социальных и психических явлений. Сущностью детерминизма является идея о том, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин.
Индетерминизм - учение, отрицающее объективную причинную обусловленность явлений природы, общества и человеческой психики.
В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей и находит свое более полное и общее отражение в фундаментальных физических теориях.
Фундаментальные физические теории (законы) представляют собой совокупность наиболее существенных знаний о физических закономерностях. Эти знания не являются исчерпывающими, но на сегодняшний день они наиболее полно отражают физические процессы в природе. В свою очередь, на основе тех или иных фундаментальных теорий формулируются частные физические законы типа закона Архимеда, закона Ома, закона электромагнитной индукции и т.д.
Ученые-науковеды едины во мнении, что основу любой физической теории составляют три главных элемента:
1) совокупность физических величин, с помощью которых описываются объекты данной теории (например, в механике Ньютона - координаты, импульсы, энергия, силы); 2) понятие состояния; 3) уравнения движения, то есть уравнения, описывающие эволюцию состояния рассматриваемой системы.
Кроме того, для решения проблемы причинности важное значение имеет подразделение физических законов и теорий на динамические и статистические (вероятностные).