Сложение пар сил в пространстве
Аксиома о условии эквивалентности пар сил в пространстве. Заместо вектора момента каждой пары сил, перпендикулярного плоскости чертежа, указывают лишь направление, в каком пара сил стремится вращать эту плоскость.
Рис. 33
Пары сил в пространстве эквивалентны, ежели их моменты геометрически равны. Не изменяя деяния пары сил на жесткое тело, пару сил можно переносить в всякую плоскость, параллельную плоскости деяния пары, также изменять ее силы и плечо, сохраняя постоянным модуль и направление ее момента. Таковым образом, вектор момента пары сил можно переносить в всякую точку, т. е. момент пары сил является вольным вектором. Вектор момента пары сил описывает все три ее элемента: положение плоскости деяния пары, направление вращения и числовое значение момента. Разглядим сложение 2-ух пар сил, расположенных в пересекающихся плоскостях, и докажем последующую аксиому: геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной им пары. Пусть требуется сложить две пары сил, расположенные в пересекающихся плоскостях I и II имеющие моменты
Рис. 34 Выбрав силы этих пар равными по модулю
определим плечи этих пар:
Расположим эти пары сил таковым образом, чтоб силы были ориентированы по полосы пересечения плоскостей KL в противоположные стороны и уравновешивались. Оставшиеся силы образуют пару сил, эквивалентную данным двум парам сил. Эта пара сил имеет плечо ВС = d и момент, перпендикулярный плоскости деяния пары сил, равный по модулю М= Pd.
Геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной пары. Потому что момент пары сил является вольным вектором, перенесем моменты составляющих пар сил в точку В и сложим их, построив на этих моментах параллелограмм. Диагональ этого параллелограмма
представляет собой момент эквивалентной пары Отсюда следует, что вектор т. е. геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной им пары сил:
Таковой метод сложения моментов пар сил именуется правилом параллелограмма моментов. Построение параллелограмма моментов можно заменить построением треугольника моментов.
Применяя построение параллелограмма либо треугольника моментов, можно решить и обратную задачку, т. е. разложить всякую пару сил на две составляющие. Пусть требуется сложить несколько пар сил, расположенных произвольно в пространстве (рис. 35). Определив моменты этих пар, их можно перенести в всякую точку О места. Складывая поочередно моменты этих пар сил, можно выстроить многоугольник моментов пар, замыкающая сторона которого определит момент эквивалентной им пары сил. На (рис. 35) показано построение многоугольника моментов при сложении 3-х пар.
Рис. 35
Момент пары сил, сил, эквивалентной данной системе пар сил в пространстве, равен геометрической сумме моментов составляющих пар сил:
или
Плоскость I деяния данной пары сил перпендикулярна направлению ее момента
Ежели момент эквивалентной пары сил равен нулю, то пары сил взаимно уравновешиваются:
Таковым образом, условие равновесия пар сил, произвольно расположенных в пространстве, можно сконструировать так: пары сил, произвольно расположенные в пространстве, взаимно уравновешиваются в этом случае, ежели геометрическая сумма их моментов равна нулю. Ежели пары сил размещены в одной плоскости (рис. 36), то моменты этих пар сил, направленные по одной прямой, складываются алгебраически.