Вывод уравнения бернулли для струйки идеальной жидкости

Будем рассматривать установившееся течение идеальной жид­кости, находящейся под воздействием лишь одной массовой силы — силы тяжести, и выведем для этого случая основное уравнение, связывающее между собой давление в жидкости и скорость ее дви­жения.

Возьмем одну из струек, составляющих поток, и выделим сече­ниями 1 и 2 участок этой струйки произвольной длины (рис. 24). Пусть площадь первого сечения равна dS1, скорость в нем V1, дав­ление р1, а высота расположения центра тяжести сечения, отсчи­танная от произвольной горизонтальной плоскости Z1. Во втором сечении аналогично.

За бесконечно малый отрезок времени dt выделенный нами уча­сток струйки под воздействием внешних сил переместится в поло­жение 1’—2'.

Применим к этому участку струйки теорему механики о том, что работа сил, приложенных к телу, равна приращению кинети­ческой энергии этого тела. Такими силами в данном слу­чае являются силы давления, действующие нормально к по­верхности рассматриваемого участка струйки, и лишь одна из массовых сил — сила тяжести.

Подсчитаем работу сил дав­ления, силы тяжести и измене­ние кинетической энергии уча­стка струйки за сремя dt.

Работа силы давления в первом сечении будет поло­жительна, так как направле­ние силы совпадает с направ­лением перемещения, и выразится как произведение силы (p1dS1) на путь (V1dt}, т. е.

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Работа силы давления во втором сечении будет иметь знак ми­нус, так как направление силы прямо противоположно направле­нию перемещения, и определится выражением

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Силы давления, действующие по боковой поверхности отрезка струйки, работы не произведут ввиду того, что они нормальны к этой поверхности, а следовательно, нормальны и к перемеще­ниям.

Итак, работа сил давления будет равна

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Работа силы тяжести равна изменению потенциальной энергии положения участка струйки. Веса отрезков 1—1’ и 2—2' равны меж­ду собой, т. е.

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Поэтому работа силы тяжести выразится

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Приращение кинетической энергии будет равно

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Сложив работу сил давления с работой силы тяжести и приравняв эту сумму к приращению кинетической энергии, получим

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Разделим все члены уравнения на вес. После соответствую­щих сокращений получим

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Сгруппируем члены, относящиеся к первому сечению, в левой части уравнения, а относящиеся ко второму сечению—в правой части уравнения:

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

где соответствующие составляющие - нивелирная высота или геометрический напор; пьезометрическая высота или пьезометрический напор; скоростная высота или скоростной напор.

Полученное уравнение называется уравнением Бернулли для струйки идеальной несжимаемой жидкости.

Трехчлен вида

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

называется полным напором.

Уравнение Бернулли (4.12) записано для двух произвольно взятых сечений струйки, первого и второго, и выражает равенство полных напоров Н в этих сечениях. Так как эти сечения взяты со­вершенно произвольно, то, следовательно, и для любого другого сечения этой же струйки полный напор будет иметь то же значе­ние, т. е.

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Итак,для идеальной движущейся жидкости сум­ма трех высот: нивелирной, пьезометрической и скоростной есть величина, постоянная вдоль струйки.

Из уравнения Бернулли и уравнения расхода следует, что, если площадь поперечного сечения струйки уменьшается, т. е. струйка сужается, то скорость течения жидкости увеличивается, а давление уменьшается, и наоборот, если струйка расширяет­ся, то скорость уменьшается, а давление возрастает.

Рассмотрим физический или, точнее, энергетический смысл уравнения Бернулли. Условимся называть удельной энергией жид­кости энергию, отнесенную к единице веса, т. е.

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Удельная энергия имеет линейную размерность, так же как и члены уравнения Бернулли. Нетрудно показать, что члены урав­нения Бернулли являются различными формами удельной механи­ческой энергии жидкости, а именно:

z —удельная энергия положения,

p/g —удельная энергия давления движущейся жидкости,

z+ p/g — Удельная потенциальная энергия жидкости;

u2/2g – Удельная кинетическая энергия жидкости;

Н – полная удельная энергия движущейся жидкости.

Таким образом, энергетический смысл уравнения Бернулли для элементарной струйки идеальной жидкости заключается в постоян­стве вдоль струйки полной удельной энергии жидкости. Уравнение Бернул­ли, следовательно, выражает собой за­кон сохранения механической энергии в идеальной жидкости.

В процессе движения идеальной жидкости одна форма энергии может превращаться в другую форму, но полная удельная энер­гия при этом, как следует из уравнения Бернулли, остается без изменения.

Уравнение Бернулли для струйки идеальной жидкости может быть также легко получено путем интегрирования дифференци­альных уравнений движения идеальной жидкости.

ВЫВОД ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ И ИХ ИНТЕГРИРОВАНИЕ

В потоке идеальной жидкости возьмем произвольную точку М с координатами х, у, z (рис. 27) и выделим у этой точки элемент жидкости в форме прямоугольного параллелепипеда так, чтобы. точка М была бы одной из его вершин. Ребра этого параллелепи­педа пусть будут параллельны координатным осям и соответст­венно равны dx, dy и dz (эти произвольные элементарные отрезки не следует отождествлять с проекциями элементарного перемещения dx, dy и dz). вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Составим уравнения движения выделенного элемента жидкости. Будем считать, что внутри этого объема на жидкость действует результирующая массовая сила, составляющие которой, отнесенные к единице массы, равны X, Y и Z. Тогда мас­совые силы, действующие на выделенный объем в направлении ко­ординатных осей, будут равны этим составляющим, умноженным на массу выделенного объема.

Разность сил давления, действующих на параллелепипед, например, в направлении оси х, будет равна

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Скорость движения жидко­сти в точке М обозначим че­рез u, а ее компоненты — через ux, uy и uz. Тогда проекции ускорения, с которым движется выделенный объем, будут равны:

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

а силы, которые необходимо ввести в уравнения движения по принципу Д'Аламбера, определятся как произведения этих уско­рений на массу параллелепипеда.

Уравнения движения выделенного объема жидкости в проекци­ях на координатные оси теперь запишутся в следующем виде

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Разделим эти уравнения почленно на массу элемента rdxdydz и перейдем к пределу, т. е. стягивая параллелепипед к исходной точке М. Тогда в пределе получим уравнения движения жидкости, отнесенные к точке М:

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Полученная система дифференциальных уравнений движения идеальной жидкости также носит название уравнений Эйлера.

Уравнения Эйлера в таком виде справедливы как для несжи­маемой, так и для сжимаемой жидкости, а также для случая, когда из числа массовых сил действует лишь сила тяжести, и для общего случая относительного движения жидкости. Они справедливы и для неустановившегося движения.

Рассматривая установившееся движение жидкости, умножим каждое из уравнений на соответствующие проекции элементарного перемещения, равные

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

и сложим уравнения. Будем иметь

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Учитывая, что выражение в скобках является полным диффе­ренциалом давления, а также, что

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

уравнение (4. 15') можно переписать в следующем виде

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

пли

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

где U—уже силовая функция.

Интегрирование этого уравнения выполним для основного част­ного случая установившегося движения идеальной жидкости, когда на жидкость действует лишь одна массовая сила — сила тяжести.

Для этого случая, при направлении оси г вертикально вверх

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Подставляя эти значения в уравнение, получим

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

или

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Так как в случае несжимаемой жидкости v=const, то предыду­щее уравнение можно переписать в следующем виде:

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Это уравнение означает, что приращение суммы трех членов, заключенных в скобку, при перемещении частицы жидкости вдоль линии тока (траектории) равно нулю. Отсюда заключаем, что указанный трехчлен есть величина постоянная вдоль линии тока, а, следовательно, и вдоль элементарной струйки, т. е.

вывод уравнения бернулли для струйки идеальной жидкости - student2.ru

Таким образом, мы пришли к уравнению Бернулли для струй­ки идеальной жидкости.

Наши рекомендации