Что изучает кинематика. Основные ее понятия: тело отсчета, система отсчета. Понятие о траектории движения точки
Кинематика - раздел механики, посвященный изучению геометрических свойств движений без учета их масс и действующих на них сил. Движение в кинематике рассматривают как изменение положения тела в пространстве с течением времени по отношению к выбранной системе отсчета. Тело отсчёта определяется как тело, относительно которого рассматривается движение. Система координат, тело отсчёта, выбранный способ измерения образуют систему отсчета. Траектория – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным. Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной. Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте. Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.
2.Способы задания движения точки: 1) естественный, 2) координатный, 3) векторный.
Векторный способ. Положение движущейся точки М в любой момент времени можно определить с помощью ее радиус-вектора, проведенного из центра О, связанного с телом отсчета, в точку М (рис. 1.1). Чтобы задать движение векторным способом, необходимо определить векторную функцию времени в виде:
(1.1)
Зависимость (1.1) называют уравнением движения точки в векторной форме. Начало радиус-вектора движущейся точки находится в точке О, а конец его перемещается по траектории вместе с точкой М. Геометрическое место концов радиус-вектора, т.е. годограф этого вектора, определяет траекторию движущейся точки.
Координатный способ. С телом отсчета связывают прямоугольную систему декартовых координат, при этом положение точки определяют ее координатами, которые являются скалярными функциями времени (рис. 1.2):
Уравнения (1.2) называют уравнениями движения точки в координатной форме. Они являются параметрическими уравнениями траектории точки. Исключив из этих уравнений параметр – время, можно получить уравнение траектории.
Между способами задания движения точки имеется связь. Так, если начало декартовой системы координат совпадает с центром, из которого проводится радиус-вектор точки при векторном способе изучения ее движения (см. рис. 1.2), то координаты точки равны проекциям на соответствующие оси радиус-вектора точки
,
где – единичные орты координатных осей.
Естественный способ. Этот способ используют в тех случаях, когда заранее известна траектория точки. На траектории выбирают неподвижную точку О (начало отсчета), а также положительное и отрицательное направления отсчета расстояний точки от начала отсчета (рис. 1.3). Тогда положение точки М на траектории будет однозначно определяться зависимостью криволинейной координаты S = ОМ от времени
(1.3)
Связь между координатным и естественным способами определяется выражением
где – первые производные от координат точки по времени; С – постоянная интегрирования, зависящая от начальных условий.
3. Определение скорости точки при различных способах задания ее движения.
Одной из основных кинематических характеристик движения точки является скорость точки. Скорость точки – это векторная величина, характеризующая интенсивность и направление движения точки в пространстве в рассматриваемый момент времени.
В случае векторного способа задания движения вектор скорости точки равен первой производной по времени от ее радиус-вектора
(1.4)
где точка над функцией в теоретической механике означает первую производную по времени, а две точки – вторую производную по времени. Производные по другим переменным записывают обычным образом. Вектор скорости точки приложен в самой точке и направлен по касательной к траектории в сторону движения точки. Единица измерения скорости в системе СИ – 1 м/с.
При координатном способе задания движения точки ее скорость определяют через проекции вектора скорости на оси выбранной системы координат, которые равны первым производным от соответствующих координат по времени:
(1.5)
Если известны проекции скорости на оси координат, то модуль вектора скорости и его направляющие косинусы находят по формулам:
(1.6)
где – углы между вектором скорости и осями координат. При естественном способе задания движения точки вектор ее скорости определяют по формуле
(1.7)
Где – единичный вектор касательной к траектории в данной точке, направленный всегда в сторону положительного отсчета криволинейной координаты S. Скалярную величину , являющуюся проекцией вектора скорости на касательную к траектории, называют алгебраической скоростью точки (рис. 1.4). Знак алгебраической скорости определяет направление движения точки: если > 0, то вектор скорости совпадает по направлению с вектором ; в противном случае он направлен в противоположную сторону. На рисунке точка О1 означает центр кривизны траектории, а – радиус кривизны в точке М.
4. Определение ускорения точки при различных способах задания ее движения.
При координатном способе задания движения точки вектор ускорения определяют через его проекции на оси координат, которые равны вторым производным от соответствующих координат по времени:
, , . (1.9)
Если известны проекции ускорения на оси координат, то модуль вектора ускорения и его направляющие косинусы находят по формулам:
, (1.10)
где – углы между вектором ускорения и осями координат.
При естественном способе задания движения с движущейся точкой связывают естественную систему координат (рис. 1.5). Естественный трехгранник составляется из трех пересекающихся взаимно перпендикулярных плоскостей: 1 – соприкасающейся, 2 – нормальной и 3 – спрямляющей. Линии пересечения плоскостей образуют правую систему естественных осей координат: τ, n и b, определяемых единичными векторами , которые называют единичными векторами касательной, главной нормали и бинормали соответственно.
Вектор ускорения точки в естественной системе определяют по формулам:
(1.11)
Здесь – касательное или тангенциальное ускорение точки, которое направлено по касательной к траектории в сторону движения, если движение ускоренное (алгебраическая скорость точки возрастает), и в противоположную сторону, если движение замедленное (алгебраическая скорость точки убывает). Нормальное ускорение всегда направлено по нормали к траектории в сторону вогнутости. Поскольку вектор ускорения точки лежит в соприкасающейся плоскости, то его проекция на бинормаль равна нулю. Касательное ускорение характеризует изменения скорости точки по модулю, а нормальное – по направлению.
Касательное ускорение точки по величине и направлению можно определить по известным проекциям векторов скорости и ускорения на координатные оси по формуле
.
(1.12)
5. Что называется ускорением? Определение ускорения точки при естественном способе задания ее движения. Ускорение точки является векторной мерой изменения ее скорости, как по величине, так и по направлению. Направление вектора ускорения совпадает с направлением изменения скорости При векторном способе задания движения вектор ускорения точки равен первой производной по времени от вектора ее скорости или второй производной по времени от ее радиус-вектора:
(1.8)
Вектор ускорения приложен к движущейся точке, лежит в соприкасающейся плоскости к траектории в данной точке и направлен в общем случае в сторону вогнутости траектории. Единица измерения ускорения в системе СИ – 1 .
При естественном способе задания движения с движущейся точкой связывают естественную систему координат (рис. 1.5). Естественный трехгранник составляется из трех пересекающихся взаимно перпендикулярных плоскостей: 1 – соприкасающейся, 2 – нормальной и 3 – спрямляющей. Линии пересечения плоскостей образуют правую систему естественных осей координат: τ, n и b, определяемых единичными векторами , которые называют единичными векторами касательной, главной нормали и бинормали соответственно.
Вектор ускорения точки в естественной системе определяют по формулам:
(1.11)
Здесь – касательное или тангенциальное ускорение точки, которое направлено по касательной к траектории в сторону движения, если движение ускоренное (алгебраическая скорость точки возрастает), и в противоположную сторону, если движение замедленное (алгебраическая скорость точки убывает). Нормальное ускорение всегда направлено по нормали к траектории в сторону вогнутости. Поскольку вектор ускорения точки лежит в соприкасающейся плоскости, то его проекция на бинормаль равна нулю. Касательное ускорение характеризует изменения скорости точки по модулю, а нормальное – по направлению.
Касательное ускорение точки по величине и направлению можно определить по известным проекциям векторов скорости и ускорения на координатные оси по формуле
. (1.12)
6. Касательное и нормальное ускорения точки. Их физический смысл. Направление векторов. Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела. Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории. Касательное ускорение указывает, насколько быстро изменяется скорость тела по модулю. Нормальное ускорение указывает,насколько быстро скорость тела изменяется по направлению.
7. Равномерное движение. Законы изменения дуговой координаты и скорости.
Равномерное движение– это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0). Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия. Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости: vcp = v.Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t: = / t. Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени. Перемещение при равномерном прямолинейном движении определяется формулой: = • t. Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:
vx = v, то есть v > 0
Проекция перемещения на ось ОХ равна:
s = vt = x – x0
где x0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени) .Уравнение движения, то есть зависимость координаты тела от времени х = х(t), принимает вид:
х = x0 + vt
Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:
х = x0 – vt криво
прямо
Зависимость проекции скорости тела от времени показана на рис. 1.11. Так как скорость постоянна (v = const), то графиком скорости является прямая линия, параллельная оси времени Ot.
Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 1.12), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение. Рис. 1.12. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.
График зависимости перемещения от времени показан на рис. 1.13. Из графика видно, что проекция скорости равна
v = s1 / t1 = tg α где α – угол наклона графика к оси времени.
Чем больше угол α, тем быстрее движется тело, то есть тем больше его скорость (больший путь тело проходит за меньшее время). Тангенс угла наклона касательной к графику зависимости координаты от времени равен скорости:
tg α = v
Зависимость координаты от времени показана на рис. 1.14. Из рисунка видно, что
tg α1 > tg α2
следовательно, скорость тела 1 выше скорости тела 2 (v1 > v2).
tg α3 = v3 < 0 Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть х = х0