Критические напряжения
Критическое напряжение - напряжение сжатия, соответствующее критической силе.
Напряжение от сжимающей силы определяется по формуле
,
где σкр — напряжение сжатия, при котором стержень еще устойчив. Корень квадратный из отношения минимального момента инерции сечения к площади поперечного сечения принято называть минимальным радиусом инерции imin:
; .
Тогда формула для расчета критического напряжения примет следующий вид:
.
Отношение μl /imin носит название гибкости стержня λ.
Гибкость стержня — величина безразмерная. Чем больше гибкость, тем меньше напряжение:
Заметим, что гибкость не зависит от материала, а определяется только геометрией стержня.
Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих деформаций.
Таким образом, критическое напряжение должно быть меньше предела упругости материала.
Предел упругости при расчетах можно заменять пределом пропорциональности. Таким образом, σкр ≤ σу ≈ σпц, где σу — предел упругости; σпц — предел пропорциональности материала;
. Откуда гибкость стержня: ;
- предельная гибкость.
Предельная гибкость зависит от материала стержня.
В случае, если λ < λпред в материале стержня возникают остаточные деформации. Поскольку в реальных конструкциях могут возникать пластические деформации, не приводящие к потере работоспособности, созданы эмпирические формулы для расчетов в этих случаях.
Расчет критического напряжения по формуле Ф. О. Ясинского для стальных стержней
Таблица 10
Материал | σ, МПа | b, МПа | λ0 | λпред |
Сталь Ст2 Сталь Ст3 Сталь 20, Ст4 Сталь 45 Дюралюмин Д16Т Сосна, ель | 29,3 | 0,70 1,14 1,15 1,67 1,83 0,194 | - |
Критическое напряжение определяется по формуле σкр = а — bλ. где а и b - коэффициенты, зависящие от материала; их значения представлены в таблице.
На рис. представлена зависимость критического напряжения от гибкости стержня.
Рис. 135 | Для стержней малой гибкости проводится расчет на сжатие σсж≤[σ]сж. Для стержней средней гибкости расчет проводят по формуле Ясинского σкр = а — bλ. Для стержней большой гибкости расчет проводят по формуле Эйлера σкр = π2Е / λ2. |
Критическую силу при расчете критического напряжения по формуле Ясинского можно определить как .
Условие устойчивости: .
Детали машин
Основные понятия и определения
Современное производство немыслимо без всевозможных высокоэффективных машин – устройств для преобразования энергии и (или) движения, накопления и переработки информации.
Машина − это устройство, создаваемое человеком для изучения и использования законов природы с целью облегчения физического и умственного труда, увеличения его производительности путем частичной или полной замены человека в его трудовых функциях.
По назначению машины условно подразделяют на несколько групп.
Энергетические машины, в которых какой-либо вид энергии (электрической, тепловой и т. д.) преобразуется в механическую работу, и наоборот. К этой группе относятся машины-двигатели (электродвигатели, тепловые двигатели, двигатели внутреннего сгорания, турбины) и машины-преобразователи (электрические генераторы, компрессоры и др.).
Рабочие машины – машины, предназначенные для выполнения производственных процессов по изменению формы, свойств и положений объектов.
Рабочие машины подразделяются на транспортные и технологические.
Транспортноймашиной называется рабочая машина, в которой преобразование материала состоит только в изменении положения основного перемещаемого объекта. К транспортным машинам относятся локомотивы, турбовозы, автомобили, тракторы, лифты, транспортеры и т. д.
Технологическоймашиной называется рабочая машина, в которой преобразование материала состоит в изменении формы, свойства и положения материала или обрабатываемого объекта. К технологическим машинам принадлежат станки, текстильные машины, машины, используемые в сельском хозяйстве, металлургические, полиграфические, пищевые и др.
Информационныемашины – машины, в которых происходит преобразование вводимой информации для контроля, регулирования и управления технологическими процессами.
Информационные машины подразделяются на контрольно-управляющие и математические.
Контрольно-управляющеймашиной называется машина, которая преобразует получаемую контрольно-измерительную информацию с целью управления энергетической или рабочей машиной.
Математическоймашиной называется машина, которая преобразует информацию, получаемую в виде различных математических образов, заданных в форме отдельных чисел или алгоритмов.
Кибернетические машины – машины, заменяющие или имитирующие различные механические, физиологические или биологические процессы, присущие человеку и живой природе, и обладающие элементами искусственного интеллекта.
Главным в кибернетических машинах является их «очувствление», т. е. оснащение этих машин искусственным осязанием с помощью соответствующих датчиков, искусственным зрением с помощью телевизионных устройств и т. д.
С помощью специальных управляющих машин роботы, манипуляторы и другие машины оснащаются искусственным интеллектом, т. е. по заложенной в систему управления программе могут выполнять технологические операции того или другого вида в зависимости от ситуации, например при сборке каких-либо узлов, выбирать требуемые детали, различая их по форме, цвету, геометрическим параметрам.
В зависимости от способа управления различают машины ручного управления (на встроенном рабочем месте или дистанционного), полуавтоматического и автоматического действия.
Машиной-автоматом называется машина, которая преобразования энергии, материалов и информации, выполняет без непосредственного участия человека.
Совокупность машин-автоматов, соединенных между собой автоматическими транспортными устройствами и предназначенных для выполнения определенного технологического процесса, образует автоматическую линию.
Для управления над процессами и контроля над ними и для замены умственного труда человека широкое развитие получили логические машины.
К этим машинам относятся счетно-решающие машины, машины, моделирующие различные процессы, информационные машины и др.
Механизмом называется часть машины, в которой рабочий процесс реализуется путем выполнения определенных механических движений.
Механизм представляет собой систему тел, предназначенных для преобразования движения одного или нескольких тел в требуемые движения других тел.
Механизм осуществляет:
передачу энергии (движения), как правило;
преобразование и регулирование механического движения.
Механизмы, входящие в состав машины, весьма разнообразны. Одни из них представляют собой сочетания только твердых тел. Другие имеют в своем составе жидкие или газообразные тела, участвующие в преобразовании движения. Такие механизмы называются соответственно гидравлическими и пневматическими.
Однотипные механизмы используются в конструкциях самых разнообразных по назначению машин.
С точки зрения функционального назначения механизмы машины обычно делятся на следующие виды:
механизмы двигателей и преобразователей,
передаточные механизмы,
исполнительные механизмы,
механизмы управления, контроля и регулирования,
механизмы подачи, транспортировки, питания и сортировки обрабатываемых сред и объектов,
механизмы автоматического счета, взвешивания и упаковки готовой продукции.
Механизмы двигателей осуществляют преобразование различных видов энергии в механическую работу. К механизмам двигателей относятся механизмы двигателей внутреннего сгорания, паровых машин, электродвигателей, турбин и др.
Механизмы преобразователей (генераторов) осуществляют преобразование механической работы в другие виды энергии. К механизмам преобразователей относятся механизмы насосов, компрессоров, гидроприводов и др.
Передаточные механизмы (привод) имеют своей задачей передачу движения от двигателя к технологической машине или исполнительным механизмам. Так как вал двигателя обычно имеет большее число оборотов в минуту, чем основной вал технологической машины, задачей передаточных механизмов является уменьшение числа оборотов в минуту вала двигателя до уровня числа оборотов в минуту основного вала технологической машины.
Исполнительными механизмами называются те механизмы, которые непосредственно воздействуют на обрабатываемую среду или объект. В их задачу входит изменение формы, состояния, положения и свойств, обрабатываемых среды или объекта. К исполнительным механизмам относятся механизмы прессов, деформирующих обрабатываемый объект, механизмы металлообрабатывающих станков, изменяющие форму заготовки снятием стружки до той формы, которая требуется по технологическим условиям.
Механизмами управления, контроля и регулирования называются различные механизмы и устройства для контроля размеров обрабатываемых объектов. Например, регуляторы, реагирующие на отклонение угловой скорости главного вала машины и устанавливающие нормальную заданную угловую скорость этого вала; механизмы по контролю размеров, давления, уровней жидкостей и т. д.
К механизмам подачи, транспортировки, питания и сортировки обрабатываемых сред и объектов относятся механизмы винтовых шнеков, скребковых и ковшевых элеваторов для транспортировки и подачи сыпучих материалов, механизмы загрузочных бункеров для штучных заготовок, механизмы подачи пруткового материала в высадочных автоматах, механизмы сортировки готовой продукции по размерам, массе и конфигурации и т. д.
Механизмы автоматического счета, взвешивания и упаковки готовой продукции применяются во многих машинах, в основном выпускающих массовую штучную продукцию. Такие механизмы могут быть и исполнительными механизмами, если они входят в специальные машины, предназначенные для этих операций.
Несмотря на разницу в функциональном назначении механизмов отдельных видов, в их строении, кинематике и динамике много общего. Поэтому можно к исследованию механизмов с различными функциональными назначениями применять общие методы, базирующиеся на основных принципах современной механики. В механике обычно рассматриваются статика, кинематика и динамика как абсолютно твердых, так и упругих тел. При исследовании машин и механизмов, как правило, можно считать жесткие тела, образующие механизм, абсолютно твердыми, так как перемещения, возникающие от упругих деформаций тел, малы по сравнению с перемещениями самих тел и их точек. Если рассматривать механизмы как устройства, в состав которых входят только твердые тела, то для исследования их кинематики и динамики можно пользоваться методами, принятыми в теоретической механике. Если же требуется изучить кинематику и динамику механизмов с учетом упругости звеньев, то кроме методов теоретической механики необходимо еще применять методы, применяемые в сопротивлении материалов, теории упругости и теории колебаний. Если в состав механизма входят жидкие или газообразные тела, то необходимо привлекать к исследованию кинематики и динамики механизмов гидромеханику и аэромеханику.
Основными характеристиками машин являются: назначение и область применения, способ управления, мощность и производительность, коэффициент полезного действия, масса, габаритные размеры, стоимость и др.
Производительность машин измеряют в единицах, которые наиболее пригодны для обрабатываемых материалов. Например, производительность ткацких станков характеризуют количеством метров сотканной ткани, транспортера – массой транспортируемого груза в единицу времени и т. п.
Коэффициент полезного действия является характеристикой экономичности машин. Он показывает долю полезно реализуемой энергии и эффективность ее использования.
Массу и габаритные размеры необходимо знать для транспортирования машин и размещения их на производственных площадях.
Основные характеристики машин указывают в их техническом паспорте.
Основные требования, предъявляемые к машинам и механизмам:
работоспособность;
надежность;
технологичность;
экономичность;
эргономичность.
Работоспособностью называют состояние машин и механизмов, при котором они способны нормально выполнять заданные функции с параметрами, установленными нормативно-технической документацией (техническими условиями, стандартами и т. п.).
Надежностьюизделия называют свойство выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам в условиях использования, технического обслуживания, ремонта, хранения и транспортирования.
Обеспечение надежности является общей проблемой для всех отраслей машиностроения и приборостроения. Любая современная машина или прибор, какими бы высокими характеристиками они ни обладали, будут обесценены при ненадежной работе.
Надежность обеспечивается на всех этапах создания и эксплуатации изделий. Ошибки проектирования, погрешности в производстве, упаковке, транспортировке и эксплуатации изделия сказываются на его надежности.
Технологичными называют машины, требующие минимальных затрат средств, времени и труда при их производстве, эксплуатации и ремонте.
Машины должны быть конструктивно гибкими, т. е. приспособленными к гибкому автоматизированному производству (ГАП). Для этого их конструкции должны характеризоваться преемственностью и высоким уровнем стандартизации и унификации конструкционных элементов, материалов, расчетов и технологий, возможностью «сращивания» систем автоматизированного проектирования и производства и др.
При оценке экономичностиучитывают затраты на проектирование, изготовление, эксплуатацию и ремонт машины.
Экономичность машин достигается путем снижения материалоемкости, энергоемкости и трудоемкости производства за счет максимального коэффициента полезного действия в эксплуатации при высокой надежности; высокой специализации производства и т. д.
Эргономичность. Совершенство и красота внешних форм машины и удобство обслуживания существенно влияют на отношение к ней со стороны обслуживающего персонала.
Красивый внешний вид деталям, узлам и машине придают форма и внешняя отделка конструкции (декоративная полировка, окраска, нанесение гальванических покрытий и оксидных пленок и т. д.).
Кроме того, существенное значение имеет и влияние машин на окружающую среду.
Указанные требования к машинам и механизмам в процессе их создания, совершенствования и эксплуатации. Обеспечивают их выполнение не только инженеры-конструкторы, но и инженеры-технологи, инженеры по эксплуатации и ремонту, инженеры-экономисты и другие специалисты, а также техники и рабочие, занятые в технологических процессах.
Для понимания принципа действия машин, и в особенности для их совершенствования, необходимо иметь представление о построении машин, распространенных в технике механизмах, методах их анализа и оценки надежности.