Момент инерции материальной точки и твердого тела. Теорема Штейнера-Гюйгенса.
Момент инерцииматериальной точки относительно оси вращения - произведение массы этой точки на квадрат расстояния от оси.
При заданной массе тела момент инерции зависит как от распределения этой массы по объему тела, так и от положения и направления оси вращения.
Момент инерции твердого тела - это величина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.
Формула момента инерции:
Единица момента инерции - килограмм-метр в квадрате.
Теорема Штейнера:
Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.
Угловое ускорение, которое тело приобретает под действием момента сил, прямо пропорционально результирующему моменту всех внешних сил, приложенных к телу, и обратно пропорциональна моменту инерции телаотносительно некоторой оси
15. вопрос момент инерции однородного цилиндра или диска (вывод).
20 Применение закона сохранения импульса для абсолютно упругого и абсолютно неупругого взаимодействия.
Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.
Примером абсолютно неупругого удара может служить попадание пули (или снаряда) в баллистический маятник. Маятник представляет собой ящик с песком массой M, подвешенный на веревках (рис. 1.21.1). Пуля массой m, летящая горизонтально со скоростью попадает в ящик и застревает в нем. По отклонению маятника можно определить скорость пули.
Обозначим скорость ящика с застрявшей в нем пулей через Тогда по закону сохранения импульса
При застревании пули в песке произошла потеря механической энергии:
Отношение M / (M + m) – доля кинетической энергии пули, перешедшая во внутреннюю энергию системы:
Эта формула применима не только к баллистическому маятнику, но и к любому неупругому соударению двух тел с разными массами.
При m << M почти вся кинетическая энергия пули переходит во внутреннюю энергию. При m = M – во внутреннюю энергию переходит половина первоначальной кинетической энергии. Наконец, при неупругом соударении движущегося тела большой массы с неподвижным телом малой массы (m >> М) отношение
Дальнейшее движение маятника можно рассчитать с помощью закона сохранения механической энергии:
где h – максимальная высота подъема маятника. Из этих соотношений следует:
Измеряя на опыте высоту h подъема маятника, можно определить скорость пули υ.
Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.
Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.
При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.
Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя (рис. 1.21.2).
Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.
Рисунок 1.21.2. Абсолютно упругий центральный удар шаров |
В общем случае массы m1 и m2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии
Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0, u1 и u2 – скорости шаров после столкновения. Закон сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, записывается в виде:
m1υ1 = m1u1 + m2u2. |
Мы получили систему из двух уравнений. Эту систему можно решить и найти неизвестные скорости u1 и u2 шаров после столкновения:
В частном случае, когда оба шара имеют одинаковые массы (m1 = m2), первый шар после соударения останавливается (u1 = 0), а второй движется со скоростью u2 = υ1, т. е. шары обмениваются скоростями (и, следовательно, импульсами).
Если бы до соударения второй шар также имел ненулевую скорость (υ2 ≠ 0), то эту задачу можно было бы легко свести к предыдущей с помощью перехода в новую систему отсчета, которая движется равномерно и прямолинейно со скоростью υ2 относительно «неподвижной» системы. В этой системе второй шар до соударения покоится, а первый по закону сложения скоростей имеет скорость υ1' = υ1 – υ2. Определив по приведенным выше формулам скорости u1 и u2 шаров после соударения в новой системе, нужно сделать обратный переход к «неподвижной» системе.
Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения.
Модель. Упругие и неупругие соударения |
Центральный (лобовой) удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.
Частным случаем нецентрального упругого удара может служить соударение двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров (рис. 1.21.3).
Рисунок 1.21.3. Нецентральное упругое соударение шаров одинаковой массы. d – прицельное расстояние |
После нецентрального соударения шары разлетаются под некоторым углом друг к другу. Для определения скоростей и после удара нужно знать положение линии центров в момент удара или прицельное расстояние d (рис. 1.21.3), т. е. расстояние между двумя линиями, проведенными через центры шаров параллельно вектору скорости налетающего шара. Если массы шаров одинаковы, то векторы скоростей и шаров после упругого соударения всегда направлены перпендикулярно друг к другу. Это легко показать, применяя законы сохранения импульса и энергии. При m1 = m2 = m эти законы принимают вид:
Первое из этих равенств означает, что векторы скоростей , и образуют треугольник (диаграмма импульсов), а второе – что для этого треугольника справедлива теорема Пифагора, т. е. он прямоугольный. Угол между катетами и равен 90°.
Модель. Соударения упругих шаров | |
21.Закон сохранения полной механической энергии Превращение одного вида механической энергии в другой А как вы считаете, обладает ли эта несущаяся вниз стихия энергией? Никто не будет спорить с тем, что да. А вот какой энергией будет обладать вода – кинетической или потенциальной? И вот тут оказывается, что ни первый, ни второй варианты ответа не будут верны. А верным окажется ответ – падающая вниз вода обладает обоими видами энергии. То есть, одно и то же тело может обладать обоими видами энергии. Их сумму называют полной механической энергией тела: E=E_к+E_п. Более того, вода в данном случае не только обладает обоими видами энергии, но их величина меняется по ходу движения воды. Когда наша вода находится в верхней точке водопада и еще не начала падать, то она обладает максимальным значением потенциальной энергии. Кинетическая же энергия в данном случае равна нулю. Когда вода начинает падать вниз, у нее появляется кинетическая энергия движения. По ходу движения вниз потенциальная энергия уменьшается, так как уменьшается высота, а кинетическая, наоборот, возрастает, так как увеличивается скорость падения воды. То есть, происходит превращение одного вида энергии в другой. При этом полная механическая энергия сохраняется. В этом и заключается закон сохранения и превращения энергии. Закон сохранения полной механической энергии Закон сохранения полной механической энергии гласит: полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной. Когда же присутствует, например, трение скольжения, тело вынуждено тратить часть энергии на его преодоление, и энергия, естественно будет уменьшаться. Поэтому в реальности, при передаче энергии практически всегда существуют потери, которые приходится учитывать. Закон сохранения энергии можно представить в виде формулы. Если мы обозначим начальную и конечную энергию тела как E_1 и E_2, то закон сохранения энергии можно выразить так: E_1=E_2. В начальный момент времени тело имело скорость v_1 и высоту h_1: E_1=(mv_1^2)/2+mgh_1. В конечный момент времени со скоростью v_2 на высоте h_2 энергия E_2=(mv_2^2)/2+mgh_2. В соответствии с законом сохранения энергии: (mv_1^2)/2+mgh_1=(mv_2^2)/2+mgh_2. Если мы знаем начальные значения скорости и энергии, то мы можем высчитать конечную скорость на высоте h, или, наоборот, найти высоту, на которой тело будет иметь заданную скорость. При этом масса тела не имеет значения, так как она сократится из уравнения. Энергия также может передаваться от одного тела к другому. Так, например, при выпуске стрелы из лука потенциальная энергия тетивы, превращается в кинетическую энергию летящей стрелы. 23.Потенциальная энергия поля силы тяжести Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по модулю и направлению сила тяжести Работа этой силы равна изменению некоторой физической величины mgh (где h – высота, отсчитываемая от некоторого нулевого уровня), взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести: Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень. В то же время она равна работе внешних сил на перемещение тела с нулевого уровня на требуемую высоту. Потенциальная энергия Eр зависит от выбора нулевого уровня отсчета. Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔEр = Eр2 – Eр1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня. |