Термоядерная реакция синтеза
Ускорение точки
Среднее ускорение
характеризует изменение вектора скорости за малый промежуток времени Δt . Ускорение точки в данный момент времени
3)При криволинейном движении скорость направлена по касательной к траектории. Поскольку направление скорости постоянно изменяется, то криволинейное движение - всегда движение с ускорением, в том числе, когда модуль скорости остается неизменным |
В общем случае ускорение направлено под углом к скорости. Составляющая ускорения, направленная вдоль скорости, называется тангенциальным ускорением . Она характеризует изменение скорости по модулю. | |
| |
Составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально) скорости, называется нормальным ускорением . Она характеризует изменение скорости по направлению. | |
| |
Здесь R - радиус кривизны траектории в данной точке. Тангенциальное и нормальное ускорение взаимноперпендикулярны, поэтому модуль полного ускорения | |
| |
Полное ускоpение точки складывается из касательного и ноpмального ускоpений по пpавилу сложения вектоpов. Оно всегда будет напpавлено в стоpону вогнутости тpаектоpии, поскольку в эту стоpону напpавлено и ноpмальное ускоpение. 4) Углова́я ско́рость — векторная физическая величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:, а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону. Единица измерения угловой скорости, принятая в системах СИ и СГС — радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, — физически безразмерен, поэтому физическая размерность угловой скорости — просто [1/секунда]). В технике также используются обороты в секунду, намного реже — градусы в секунду, грады в секунду. Углово́е ускоре́ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела. При вращении тела вокруг неподвижной оси, угловое ускорение по модулю равно[1]: Вектор углового ускорения направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно — при замедленном). 5) Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив первый закон Ньютона (закон инерции): все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся[1]. Эквивалентной является следующая формулировка, удобная для использования в теоретической механике[2]: Инерциальной называется система отсчёта, по отношению к которой пространство является однородным и изотропным, а время — однородным. Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности, все ИСО равноправны, и все законы физики инвариантны относительно перехода из одной ИСО в другую. Это значит, что проявления законов физики в них выглядят одинаково, и записи этих законов имеют одинаковую форму в разных ИСО. Предположение о существовании хотя бы одной ИСО в изотропном пространстве приводит к выводу о существовании бесконечного множества таких систем, движущихся друг относительно друга со всевозможными постоянными скоростями. Если ИСО существуют, то пространство будет однородным и изотропным, а время — однородным; согласно теореме Нётер, однородность пространства относительно сдвигов даст закон сохранения импульса, изотропность приведёт к сохранению момента импульса, а однородность времени — к сохранению энергии движущегося тела. Если скорости относительного движения ИСО, реализуемых действительными телами, могут принимать любые значения, связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Галилея. В специальной теории относительности скорости относительного движения ИСО, реализуемых действительными телами, не могут превышать некоторой конечной скорости «C» (скорость распространения света в вакууме) и связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Лоренца. Первый закон Ньютона: Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго. 6) Второй закон Ньютона — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. |
В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.
Си́ла — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная кмассивному телу сила является причиной изменения его скорости или возникновения в нём деформаций и напряжений[1][2]. Сила как векторная величина характеризуется модулем, направлением и «точкой» приложения силы.
Ма́сса (от греч. μάζα) — скалярная физическая величина, одна из важнейших величин в физике. Первоначально (XVII—XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства — вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям — массаэквивалентна энергии покоя).
В современной физике понятие «количество вещества» имеет другой смысл, а концепцию «массы» можно трактовать несколькими способами:
· Пассивная гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями — фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии.
· Активная гравитационная масса показывает, какое гравитационное поле создаёт само это тело — гравитационные массы фигурируют в законе всемирного тяготения.
· Инертная масса характеризует инертность тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила в инерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.
7)Третий закон Ньютона
Третий закон Ньютона - физический закон, в соответствии с которым:
Силы взаимодействия двух материальных точек в инерциальной системе отсчета:
- равны по модулю;
- противоположны по направлению; и
- действуют вдоль прямой, соединяющей точки.
8)Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:
где — радиус-вектор центра масс, — радиус-вектор i-й точки системы, — масса i-й точки.
Для случая непрерывного распределения масс:
где — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.
Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением[2]:
То есть, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.
9) Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, — однородность пространства.
Под реактивным понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела. При этом возникает т.н. реактивная сила, сообщающая телу ускорение.
Запуск космического корабля или праздничной ракеты – это примеры реактивного движения.
10) Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательногодвижения[1]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленнаядвижением.
Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:
— есть равнодействующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы . Учитывая, что , получим:
Если система замкнута, то есть внешние по отношению к системе силы отсутствуют, или равнодействующая всех сил равна нулю, то , а величина
остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.
Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:
где:
— масса тела
— скорость центра масс тела
— момент инерции тела
— угловая скорость тела.
11) Потенциальная энергия — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[1]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является Джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии. Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.
Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля. Любая физическая система стремится к состоянию с наименьшей потенциальной энергией. Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.
12)При перемещении тела под действием силы совершается работа. Следовательно, работу А можно выразить произведением силы Р на путь S, т. е.
A = PS кГ*м. (25)
Работа, совершенная в единицу времени, называется мощностью и выражается формулой
N = A/t = (PS)/t = (pv)/60 [кГм/сек],(26)
где Р — сила, кГ;
v — скорость, м/мин.
Единицей измерениямощности является ватт (вт). Для выражения мощности в киловаттах применяют формулу N =A/(60*102) квт.
Часть мощности N эф двигателя станка затрачивается на полезную работу, другая часть Nтр — на преодоление сил трения. Общая затрачиваемая мощность N=Nэф + Nтр.
Полезная работа является частью затраченной работы, а отношение полезной работы к затраченной называется коэффициентом полезного действия (к. п. д.) станка и обозначается буквойη(эта): η = (Nэф/ N)* 100%. (27)
13)Механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может никуда исчезнуть.
Для замкнутой системы физических тел, например, справедливо равенство
Ek1 + Ep1 = Ek2 + Ep2,
где Ek1, Ep1 — кинетическая и потенциальная энергии системы какого-либо взаимодействия,Ek2, Ep2 — соответствующие энергии после.
Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Формулировка закона сохранения механической энергии:
Полная механическая энергия, т.е. сумма потенциальной и кинетической энергии тела, остается постоянной, если действуют только силы упругости и тяготения и отсутствуют силы трения.
14)В физике консервати́вные си́лы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил)[1]. Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0.
Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.
Неконсервативные силы. Диссипативные системы. Общий закон сохранения энергии. Существуют силы, работа которых зависит от формы пути, т. е. работа по замкнутой траектории не равна нулю (например силы трения). Такие силы называют неконсервативными. В этом случае работа не идёт на увеличение потенциальной энергии (dA dEn), а идёт на нагревание тел, т. е. на увеличение кинетической энергии молекул тела. Кинетическая энергия тела уменьшается, происходит её рассеяние или диссипация. Однако это не означает, что энергия исчезла. Она просто перешла в энергию теплового движения молекул. Возможен и переход энергии в другие виды, но полный баланс энергии всегда сохраняется. Полная энергия замкнутой системы не исчезает, не изменяется, а лишь переходит из одной формы в другую – таков общий закон сохранения энергии. Отметим, что и для вращательного движения справедлив закон сохранения энергии.
15) Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
МОМЕНТ СИЛЫ
- величина, характеризующая вращательный эффект силы; имеет размерность произведения длины на силу. Различают момент силы относительно центра (точки) и относительно оси.
M. с. относительно центра О наз. векторная величина M0, равная векторному произведению радиуса-вектора r, проведённого из O в точку приложения силы F, на силу M0 = [rF]или в др. обозначениях M0 = r F (рис.). Численно M. с. равен произведению модуля силы на плечо h, т. е. на длину перпендикуляра, опущенного из О на линию действия силы, или удвоенной площади
треугольника, построенного на центре O и силе:
Момент импульса материальной точки относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора иимпульса:
где — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, — импульс частицы.
Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:
где — радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.
(В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределенной системы это может быть записано как где — импульс бесконечно малого точечного элемента системы).
В системе СИ момент импульса измеряется в единицах джоуль-секунда; Дж·с.
Из определения момента импульса следует его аддитивность: как, для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:
.
· Замечание: в принципе момент импульса может быть вычислен относительно любого начала отсчета (получившиеся при этом разные значения связаны очевидным образом); однако чаще всего (для удобства и определенности) его вычисляют относительно центра масс или закрепленной точки вращения твердого тела итп).
16)Основое уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.
М = E*J или E = M/J
Сравнивая полученное выражение со вторым законом Ньютона с поступательным законом, видим, что момент инерции J является мерой инертности тела во вращательном движении. Как и масса величина аддитивная.
17) Гироско́п (от др.-греч. γῦρος «круг» и σκοπέω «смотрю») — устройство, способное реагировать на изменение углов ориентации тела, на котором оно установлено, относительно инерциальной системы отсчета. Простейший пример гироскопа — юла (волчок).
Термин впервые введен Жаном (Бернаром Леоном) Фуко в его докладе в 1852 году Французской Академии Наук. Доклад был посвящён способам экспериментального обнаружения вращения Земли в инерциальном пространстве. Этим и обусловлено название «гироскоп».
Наблюдать прецессию достаточно просто. Нужно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.
Главное свойство прецессии — безынерционность: как только сила, вызывающая прецессию волчка, пропадёт, прецессия прекратится, а волчок займёт неподвижное положение в пространстве. В примере с волчком этого не произойдет, поскольку в нём вызывающая прецессию сила — гравитация Земли — действует постоянно.
Можно получить эффект прецессии, не дожидаясь замедления вращения волчка: толкните его ось (приложите силу) — начнётся прецессия. С прецессией напрямую связан другой эффект, показанный на иллюстрации ниже — это нутация — колебательные движения оси прецессирующего тела. Скорость прецессии и амплитуда нутации связаны со скоростью вращения тела (изменяя параметры прецессии и нутации в случае, если есть возможность приложить силу к оси вращающегося тела, можно изменить скорость его вращения).
Если прецессия происходит с угловой скоростью Ω, то за время dt ось гироскопа повернется на угол dφ =Ω dt и приращение dLмомента импульса составит dL=[Ω dt,L]. Тогда, из (1) получается следующее соотношение, связывающее угловую скорость прецессии с моментом сил, действующих на ось:
M12=[Ω,L] |
18) Вращение тела вокруг неподвижной оси.Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси. Под абсолютно твердым телом понимают такое, у которого остаются неизменными расстояния между любыми его точками. Такое тело не может испытывать деформаций.При вращении такого тела вокруг неподвижной оси каждая его точка описывает дугу окружности с центром, лежащим на оси, причем все такие окружности лежат в параллельных плоскостях и все дуги содержат одинаковое число дуговых градусов.
Так как положение неподвижной оси задано, а расстояние между двумя любыми точками остается неизменным, определить положение тела в пространстве можно с помощью всего одного числа. Этим единственыи числом может быть, например, угол φ , на который повернуто тело вокруг оси относительно некоторого своего положения, принятого за нулевое.
При вращении тела вокруг неподвижной оси угол φ меняется с течением времени.
Угловая скорость. Угловая скорость w вращающегося тела – это быстрота изменения угла поворота φ (t) вокруг оси :
w = lim Δ φ / Δ t = dφ /dt
D t ® 0
Обычно угол измеряется в радианах, время – в секундах, угловая скорость – в радианах в секунду.
Отметим важный факт: так как при вращении тела все точки тела за одно и то же время поворачиваются на один и тот же угол, то угловая скорость вращения любой точки тела одна и та же. Поэтому обычно говорят не об угловой скорости какой-то конкретной точки тела, а об угловой скорости тела вообще.
Если за малый промежуток времени Δ t тело повернется вокруг оси на угол Δ φ , то точка тела, находящаяся на расстоянии R от оси вращения, переместится, пройдя по дуге окружности расстояние Δ s = R Δ φ . Разделив обе части последнего уравнения на Δ t, получим соотношение между величиной линейной скорости V точки и угловой скоростью w вращения:
D s/ Δ t = R Δ φ / Δ t
или
V = Rw
Момент инерцииматериальной точки относительно оси вращения - произведение массы этой точки на квадрат расстояния от оси.
При заданной массе тела момент инерции зависит как от распределения этой массы по объему тела, так и от положения и направления оси вращения.
Момент инерции твердого тела - это велина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.
Формула момента инерции:
Единица момента инерции - килограмм-метр в квадрате.
20)Теорема Штейнера:
Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.
Угловое ускорение, которое тело приобретает под действием момента сил, прямо пропорционально результирующему моменту всех внешних сил, приложенных к телу, и обратно пропорциональна моменту инерции телаотносительно некоторой оси.
21) Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, — однородность пространства.
22)Возьмем абсолютно твердое тело, вращающееся около неподвижной оси z, проходящей через него (рис. 1). Разобьем тело на маленькие объемы с элементарными массами m1, m2,..., mn , находящиеся на расстоянии r1, r2,..., rn от оси.
Рис.1
При вращении твердого тела относительно неподвижной оси каждый из его элементарных объемов массами mi опишет окружность соответствующих радиусов ri; при этом объем будет иметь соответствующую линейную скорость vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:
(1)
Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов:
или
Используя выражение (1), получаем
где Jz - момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела
(2)
Из сравнения формулы (2) с выражением для кинетической энергии поступательно движущегося тела (T=mv2/2), мы видим, что момент инерции является мерой инертности тела при вращательном движении. Формула (2) справедлива для тела вращающегося вокруг неподвижной оси.
В качеcтве примера напишем формулу для плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения. Его энергия движения складывается из энергии поступательного движения и энергии вращения:
где m - масса катящегося тела; vc - скорость центра масс тела; Jc - момент инерции тела относительно оси, проходящей через его центр масс; ω - угловая скорость тела.
23) Закон всемирного тяготения был сформулирован Исааком Ньютоном (1643-1727) и опубликован в 1687 году. В соответствии с этим законом, два тела притягиваются друг к другу с силой, которая прямо пропорциональна массам этих тел m1 и m2 и обратно пропорциональна квадрату расстояния между ними:
Здесь r − расстояние между центрами масс данных тел, G − гравитационная постоянная, значение которой, найденное экспериментальным путем, составляет .
Сила гравитационного притяжения является центральной силой, т.е. направлена вдоль прямой, проходящей через центры взаимодействующих тел.
24) опыт Кавендиша: измерение плотности земли:
| |||||
Гелиоцентрическая система, предложенная Николаем Коперником на рубеже XIV и XV веков, противоречила учению Аристотеля и поэтому вызывала многочисленные научные споры и неприятие со стороны большинства ученых. Пытаясь найти истину, датский астроном Тихо Браге решил очень точно измерить положения и перемещения планет на небе и в течение многих лет кропотливо занимался этой работой, составив объемные таблицы. На основе данных из этих таблиц, а также используя результаты собственных наблюдений, немецкий математик, физик и астроном Иоганн Кеплер сформулировал три закона, по которым происходит движение планет. Однако объяснения этим законам Кеплер дать не мог. Таким образом, законы Кеплера только обобщили опытные факты. Пытался дать объяснение законам движения планет и Ньютон. Сделать это ему удалось на основе законов – принципов созданной им динамики, называемых сегодня законами динамики Ньютона. Ньютон применил законы динамики для объяснения законов Кеплера и открыл закон всемирного тяготения. Гениальный ученый смог понять, что природа тяготения на других планетах такова же, как на Земле. Согласно закону всемирного тяготения, все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел, и обратно пропорциональной квадрату расстояний между ними:
где m1 и m2 – массы, соответственно, первого и второго тела, R – расстояние между телами (между их центрами), а коэффициент G – гравитационная постоянная. Если два тела массой по 1 кг каждое, помещаются на расстоянии в 1 м друг от друга, то сила тяготения между ними получается численно равной гравитационной постоянной. Измерить гравитационную постоянную или массу Земли довольно сложно. Во-первых, гравитационное взаимодействие нельзя экранировать, как, например, электрическое.Во-вторых, оно очень слабое, например, два человека на расстоянии 2 м притягиваются с силой около 0,01 мг. Первой мыслью было измерить взаимодействие с очень массивным телом – горой. В 1735–1737 гг. французские ученые Пьер Бугер и Шарль Мари де ла Кондамин в ходе экспедиции в Перу пробовали измерить массу Земли по отклонению подвеса вблизи горы, массу которой можно оценить. Качественно закон тяготения был подтвержден, но количественных результатов получено не было. |
Гравитационная постоянная: Гравитацио́нная постоя́нная, постоянная Ньютона (обозначается обычно G, иногда GN или γ)[1] — фундаментальная физическая постоянная, константа гравитационного взаимодействия.
Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками смассами[2] m1 и m2, находящимися на расстоянии r, равна:
Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.
25) Первый закон Кеплера (1609 г.):
Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.
Второй закон Кеплера (1609 г.):
Радиус-вектор планеты описывает в равные промежутки времени равные площади.
Третий закон Кеплера (1619 г.):
Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:
|
Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.
26) Вес тела — это сила, с которой тело, находящееся в силовом поле, действует на опору или подвес. Не путать с бытовым понятием веса, где он является массой тела.
Вес тела обозначается буквой P и в СИ измеряется в Ньютонах.
Вес P тела, покоящегося в инерциальной системе отсчёта , совпадает с силой тяжести, действующей на тело, и пропорционален массе и ускорению свободного падения в данной точке:
Значение веса (при неизменной массе тела) пропорционально ускорению свободного падения, которое зависит от высоты над земной поверхностью (или поверхностью другой планеты, если тело находится вблизи нее, а не Земли, и массы и размеров этой планеты), и, ввиду несферичности Земли, а также ввиду ее вращения (см. ниже), от географических координат точки измерения. Другим фактором, влияющим на ускорение свободного падения и, соответственно, вес тела, являются гравитационные аномалии, обусловленные особенностями строения земной поверхности и недр в окрестностях точки измерения.
При движении системы тело — опора (или подвес) относительно инерциальной системы отсчёта c ускорением вес перестаёт совпадать с силой тяжести:
27) Искусственный спутник Земли (ИСЗ) — космический аппарат, вращающийся вокруг Земли по геоцентрической орбите.
Для движения по орбите вокруг Земли аппарат должен иметь начальную скорость, равную или немного большую первой космической скорости. Полёты ИСЗ выполняются на высотах до нескольких сотен тысяч километров. Нижнюю границу высоты полёта ИСЗ обуславливает необходимость избегания процесса быстрого торможения в атмосфере. Период обращения спутника по орбите в зависимости от средней высоты полёта может составлять от полутора часов до нескольких ЛЕТ. Особое значение имеют спутники на геостационарной орбите, период обращения которых строго равен суткам и поэтому для наземного наблюдателя они неподвижно «висят» на небосклоне, что позволяет избавиться от поворотных устройств в антеннах.
Искусственные спутники Земли широко используются для научных исследований и прикладных задач
Различают следующие типы спутников:
· Астрономические спутники — это спутники, предназначенные для исследования планет, галактик и других космических объектов.
· Биоспутники — это спутники, предназначенные для проведения научных экспериментов над живыми организмами в условиях космоса.
· Дистанционного зондирования Земли
· Космические корабли — пилотируемые космические аппараты
· Космические станции — долговременные космические корабли
· Метеорологические спутники — это сп