Механическое движение. Элементы кинематики материальной точки: радиус-вектор, перемещение, скорость.
Ускорение точки. Нормальное и тангенциальное ускорение. Проекции ускорения на координатной оси.
Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости с течением времени, равная приращению скорости за единицу времени. Различают среднее и мгновенное ускорения.
- среднее ускорение,
- мгновенное ускорение.
Вектор ускорения может быть представлен через его проекции на координатные оси:
,
где , , .
Модуль ускорения можно определить следующим образом:
.
1.2 Тангенциальная и нормальная составляющие ускорения
Часто используется представление ускорения через две составляющие: тангенциальное и нормальное ускорения (рис. 2):
;
.14 29
Тангенциальное ускорение характеризует изменение скорости по модулю (величине) и направлено по касательной к траектории: ,
где - производная модуля скорости, - единичный вектор касательной, совпадающий по направлению со скоростью.
Нормальное ускорение характеризует изменение скорости по направлению и направлено по радиусу кривизны к центру кривизны траектории в данной точке:
,
где R - радиус кривизны траектории, - единичный вектор нормали.
Модуль вектора ускорения может быть найден по формуле
.
1.3 Основная задача кинематики
Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:
; ; ; ;
.
Частные случаи прямолинейного движения:
1) равномерное прямолинейное движение: ;
2) равнопеременное прямолинейное движение: .
Динамика материальной точки. Сила, масса и импульс частицы. Законы Ньютона.
Работа, совершаемая при вращении твердого тела. Момент силы, относительно точки и оси вращения. Основное уравнение динамики вращательного движения твердого тела.
Момент силы от-но непод т-ки вращения- векторная величина= векторному произведению радиус-вектора в т-ке приложения силы на верток силы. М=r×F. Момент силы от-но непод оси вращения- скалярная величина = проекции на эту ось момента силы, определенного относительно произвольной т-ки этой оси. Мz=Mcosφ. Мz не зависит от выбора т.О на оси. Рассмотрим неподвиж тв тело,которое может вращаться вокруг неподвиж оси z,проходящей ч\з центр инерции тв тела. В некоторый момент времени на ТВ тело начинает действовать постоянная сила F,приложенная к т.В на расстоянии r от оси вращения
Формула Лапласа
Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:
Здесь R1,2 — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому
R1 = R2 = R
Для случая поверхности кругового цилиндра радиуса R имеем
Механическое движение. Элементы кинематики материальной точки: радиус-вектор, перемещение, скорость.
Механическим движением тел называют изменение их положения (или положения их частей) в пространстве с течением времени. В основе классической механики лежат законы Ньютона.
Кинематика изучает механическое движение с геометрической точки зрения и не рассматривает причины, вызывающие это движение. В механике рассматривается движение таких объектов, как материальная точка и абсолютно твердое тело.
Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.
Абсолютно твёрдым телом называется тело, деформацией которого в данных условиях можно пренебречь. Абсолютно твёрдое тело можно рассматривать как систему материальных точек, жестко связанных между собой.
1.1 Кинематические характеристики движения материальной точки
Описать движение материальной точки – значит знать ее положение относительно выбранной системы отсчета в любой момент времени. Системой отсчёта называется система координат, связанная с телом отсчёта и снабжённая синхронизированными часами. Наиболее часто используется прямоугольная декартова система координат (рис. 1).
Положение материальной точки характеризуется радиусом-вектором , проведённым из начала координат в данную точку (рис. 1). Проекции радиуса-вектора на координатные оси соответствуют координатам точки в выбранной системе координат (рис. 1):
.
Движение материальной точки задано, если известна зависимость координат точки от времени, т.е.
или .
Данные уравнения являются кинематическими уравнениями движения материальной точки, или законом движения точки. В процессе движения конец радиуса-вектора, связанный с точкой, описывает в пространстве кривую, называемую траекторией движения материальной точки. В зависимости от формы траектории различают прямолинейное и криволинейное движения.
Перемещением материальной точки называют вектор, проведённый из начальной точки в конечную точку траектории (рис. 1):
.
Вектор может быть выражен через приращения координат и орты соответствующих осей (единичные векторы, направленные по осям): .
Модуль вектора перемещения можно определить следующим образом:
.
Путь материальной точки S12 - это длина траектории.
Скорость - векторная физическая величина, характеризующая быстроту изменения положения тела в пространстве, равная перемещению тела за единицу времени. Различают среднюю и мгновенную скорости.
- средняя скорость;
- мгновенная скорость;
- среднее значение модуля скорости.
Вектор средней скорости направлен так же, как и вектор перемещения . Вектор мгновенной скорости направлен по касательной к траектории движения так же, как вектор элементарного перемещения: . Так как , где dS - элементарный путь, то модуль мгновенной скорости равен производной пути по времени:
.
В декартовой системе координат скорость можно представить через её проекции на оси:
Модуль скорости может быть найден по следующей формуле:
.
При рассмотрении движения тела относительно двух различных инерциальных систем отсчета используют классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно движущейся системы и скорости самой движущейся системы относительно неподвижной :
.