Уменьшив массу колеблющегося тела
2. уменьшив начальную амплитуду колебания
3. увеличив массу колеблющегося тела
4. увеличив начальную амплитуду колебания
5. уменьшив начальную амплитуду колебаний и вязкость среды
37.Коэффициент затухания – это физическая величина, …
1. показывающая во сколько раз уменьшается амплитуда колебаний за период
2. обратная времени, по истечении которого амплитуда колебаний уменьшается в «е» раз
3. обратная числу колебаний, по завершению которых амплитуда колебаний уменьшается в «е» раз
4. обратная числу колебаний, по завершению которых амплитуда колебаний уменьшается до нуля
5. обратная времени, по истечении которого амплитуда колебаний уменьшается до нуля
38. Шарик радиусом 10 см и массой 0,5 кг, подвешенный к нити длиной 20 см, совершает затухающие колебания в среде с коэффициентом затухания 2 кг·с-1. Коэффициент сопротивления среды равен … с-1.
1. 0,14 2. 1 3. 2 4. 4 5. 8
39. За 10 с амплитуда пружинного маятника массой m = 0,1 кг уменьшилась в е раз. Коэффициент затухания и коэффициент сопротивления среды равны …
1. = 1; = 0,01 кг·с-1
2. = 0,1; = 0,1 кг·с-1
3. = 0,1; = 0,02 кг·с-1
4. = 0,01; = 0,04 кг·с-1
5. = ; = 0,02 кг·с-1
40. Период Т затухающих колебаний груза массой m на пружине жесткостью k можно рассчитать по формуле … ( – коэффициент затухания, – циклическая частота свободных незатухающих колебаний колебательной системы).
1. 2. 3. 4. 5.
41. За время релаксации амплитуда затухающих колебаний …
1. увеличивается в 2 раза
2. уменьшается в 2 раза
3. увеличивается в e раз
4. уменьшается в e раз
5. не изменяется
42. Если период колебаний 2,5 с, коэффициент затухания 2 с-1, то логарифмический декремент затухания равен ….
1. 0,8 2. 1,25 3. 5 4. 5.
43. За один период амплитуда колебаний математического маятника с логарифмическим декрементом затухания уменьшится в …раз.
1. 0,3 2. 0,37 3. 1,35 4. 2,73 5. 3,33
44. Логарифмический декремент затухания – это физическая величина, …
1. показывающая во сколько раз уменьшается амплитуда колебаний за период
2. обратная числу колебаний, по прошествии которых амплитуда колебаний уменьшается до нуля
3. обратная числу колебаний, по прошествии которых амплитуда колебаний уменьшается в «е» раз
4. обратная промежутку времени, за которое амплитуда колебаний уменьшается в «е» раз
5. обратная промежутку времени, за которое амплитуда колебаний уменьшается до нуля
45. Логарифмический декремент затухания колебаний маятника λ. Если амплитуда колебаний уменьшилась в n раз, то маятник совершил … колебаний.
1. 2. 3. 4. 5.
46. Период затухающих колебаний Т = 4 с. Добротность системы Q = 5. Логарифмический декремент затухания λ равен …
1. 20 2. 1,57 3. 1,25 4. 0,80 5. 0,63
47. Период затухающих колебаний Т = 4 с, логарифмический декремент затухания λ = 1,6. Добротность системы (Q) равна …
1. 0,4 2. 0,79 3. 1,96 4. 2,5 5. 6,4
48.При сложении двух одинаково направленных колебаний, описываемых соответственно уравнениями м и м получается колебание с амплитудой А, равной … м.
1. 2. 3.
4. 5.
49.Складываются два гармонических колебания одного направления с одинаковыми периодами. Результирующее колебание имеет максимальную амплитуду при разности фаз, равной …
1. 0 2. 3. 4. 5.
50.При сложении одинаково направленных гармонических колебаний одной частоты с амплитудами 10 см и 6 см, возникло колебание с амплитудой 14 см. Разность фаз складываемых колебаний равна … град.
1. 30 2. 45 3. 60 4. 90 5. 120
51. Складываются два колебания одинакового направления с амплитудами А1 = 3 см и А2 = 4 см. Чему равна разность фаз этих колебаний (в радианах), если амплитуда А результирующего колебания равна 5 см?
1. 0 2. 3. 4. 2.
52. Складываются два колебания одинакового направления с амплитудами А1 = 3 см и А2 = 4 см. Амплитуда А результирующего колебания равна 6,1 см. Разность фаз складываемых колебаний равна … рад.
1. 0 2. 3. 4. 5.
53. Складываются два колебания одинакового направления с амплитудами А1 = 3 см и А2 = 4 см и разностью фаз рад. Амплитуда А результирующего колебания равна … см.
1. 1,0 2. 6,08 3. 6,77 4. 5,0 5. 7
54.Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами . При разности фаз амплитуда результирующего колебания равна …
1. 2. 3. 0 4. 5.
55.Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами . При разности фаз амплитуда результирующего колебания равна …
1. 2. 3. 0 4. 5.
56. Длина волны, распространяющейся в воздухе, равна 1 м. Разность фаз колебаний двух точек, лежащих на луче и отстоящих друг от друга на расстоянии 2 м, равна …
1. 2. 3. 4. 5. 0
57. Длина волны, распространяющейся в воздухе, равна 2 м. Разность фаз колебаний двух точек, лежащих на луче и отстоящих друг от друга на расстоянии 1 м, равна …
1. 2. 3. 4. 5. 0
58. При сложении двух происходящих в одном направлении колебаний, описываемых соответственно уравнениями м и м, получается гармоническое колебание с амплитудой, равной … м.
1. 0,34 2. 0,44 3. 0,58 4. 0,7 5. 0,8
59.Колебания с частотой 40 Гц распространяются в воздухе со скоростью 400 м/с. Соседние точки пространства, колебания в которых происходят в противофазе, находятся на расстоянии … м.
1. 400 2. 40 3. 20 4. 10 5. 5
60. Если расстояние между точками бегущей волны, распространяющейся в стали равно 2,5 м, а колебания в них отличаются по фазе на , то частота звуковых колебаний равна … Гц. Скорость звука в стали равна 5 км/с.
1. 200 2. 500 3. 1000 4. 2500 3. 5000
61. В результате сложения двух гармонических колебаний одинакового направления с частотами = 1000 Гц и = 1002 Гц получаются колебания с периодически изменяющейся амплитудой (биения). Период биений равен …
1. 1 мс 2. 10 мс 3. 50 мс 4. 0,5 с 5. 1 с
62. При сложении двух гармонических колебаний одинакового направления с частотами = 1000 Гц и ( > ) получают колебания с периодически изменяющейся амплитудой (биения). Период биений равен 20 мс. Частота второго колебания равна … Гц.
1. 998 2. 1005 3. 1020 4. 1050 5.1200
63. В результате сложения двух гармонических колебания одинакового направления получаются колебания с периодически изменяющейся амплитудой (биения). Период биений равен 0,25 с. Разность частот Δν складываемых колебаний равна … Гц.
1. 1 2. 2 3. 2,5 4. 4 5. 8π
64.Уравнение бегущей вдоль оси х плоской гармонической волны имеет вид …
1. 2. 3.
4. 5.
65. Уравнение бегущей вдоль оси х плоской гармонической волны имеет вид …
1. 2. 3.
4. 5.
66.Уравнение плоской бегущей вдоль оси х волны имеет вид …
1. 2. 3.
4. 5.
67.Уравнение плоской бегущей волны имеет вид у = 2 sin (4 t–3 x), м. Длина волны равна…см.
1. 3 2. 75 3. 133 4. 157 5. 209
68. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид , м. Период колебаний равен … мс.
1. 4 2. 6,28 3. 1 4. 1000 5. 0,01
69. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид
. Волновое число равно … рад/м.
1. 2 2. 10 3. 100 4. 500 5. 1000
70.Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ = 0,01sin(103t - 2x). Скорость распространения волны равна … м/с.
1. 2 2. 3,14 3. 500 4. 1000 5. 2000
71. Период колебаний Т = 0,12 с. Колебания распространяются со скоростью υ = 300 м/с. Волновое число равно … м –1.
1. 52 2. 36 3. 5,73 4. 0,17 5. 4·10– 4
72.Уравнение стоячей волны имеет вид …
1. 2. 3.
4. 5.
73. Расстояние между соседними узлами стоячей волны, равно 10 м. Длина волны равна … м.
1. 0,05 2. 0,1 3. 0,15 4. 0,2 5. 0,4
74.Расстояние между пучностью и ближайшим к ней узлом стоячей волны равно 20 см. Длина волны равна … м.
1. 0,1 2. 0,2 3. 0,3 4. 0,4 5. 0,8
75.Расстояния между соседними пучностями стоячей волны равно 20 см. Длина волны равна … м.
1. 0,8 2. 0,4 3. 0,2 4. 0,10 5. данных недостаточно
76. Точка участвует в двух взаимно перпендикулярных колебаниях (м) и (м). Уравнение траектории результирующего движения точки имеет вид …
1. 2. 3. 4. 5.