Основы теории статистического контроля
Выборочный контроль, построенный на научной основе, т.е. исходящий из теории вероятностей и математической статистики, называют статистическим контролем. Предпринимателя и менеджера выборочный контроль может интересовать не только в связи с качеством продукции, но и в связи, например, с контролем экологической обстановки, поскольку зафиксированные государственными органами экологические нарушения влекут штрафы и иные "неприятные" последствия. Обсудим основные подходы статистического контроля.
При статистическом контроле решение о генеральной совокупности – об экологической обстановке в данном регионе или о партии продукции - принимается по выборке, состоящей из некоторого количества единиц (единиц экологического контроля или единиц продукции). Следовательно, выборка должна представлять партию, т.е. быть репрезентативной (представительной). Как эти слова понимать, как проверить репрезентативность? Ответ может быть дан лишь в терминах вероятностных моделей выборки.
Наиболее распространенными являются две вероятностные модели—биномиальная и гипергеометрическая. В биномиальной модели предполагается, что результаты контроля n единиц можно рассматривать как совокупность n независимых одинаково распределенных случайных величин Х1, Х2,....,Хn , где Хi = 1, если i‑ое измерение показывает, что есть нарушение, т.е. превышено ПДК (предельная норма концентрации) или i‑ое изделие дефектно, и Хi= 0, если это не так. Тогда число Х превышений ПДК или дефектных единиц продукции в партии равно
Х= Х1+ Х2+...+ Хn .(1)
Из формулы (1) и Центральной Предельной Теоремы теории вероятностей вытекает, что при увеличении объема выборки n распределение Х сближается с нормальным распределением. Известно, что распределение Х имеет вид
Р( Х= k) = Cnk pk (1—p)n-k , (2)
где Cnk - число сочетаний из n элементов по k, а p —уровень дефектности (в другой предметной области - доля превышений ПДК в генеральной совокупности), т.е. p = Р( Хi= 1). Формула (2) задает так называемое биномиальное распределение.
Гипергеометрическое распределение соответствует случайному отбору единиц в выборку. Пусть среди N единиц, составляющих генеральную совокупность, имеется D дефектных. Случайность отбора означает, что каждая единица имеет одинаковые шансы попасть в выборку. Мало того, ни одна пара единиц не должна иметь при отборе в выборку преимущества перед любой другой парой. То же самое —для троек, четверок и т.д. Это условие выполнено тогда и только тогда, когда каждое из сочетаний по n единиц из N имеет одинаковые шансы быть отобранным в качестве выборки. Вероятность того, что будет отобрано заранее заданное сочетание, равна, очевидно, 1/ .
Отбор случайной выборки согласно описанным правилам организуют при проведении различных лотерей. Пусть Y —число дефектных единиц в случайной выборке, организованной таким образом. Известно, что тогда P (Y = k) – гипергеометрическое распределение, т.е.
(3)
Замечательный математический результат состоит в том, что биномиальная и гипергеометрическая модели весьма близки, когда объем генеральной совокупности (партии) по крайней мере в 10 раз превышает объем выборки. Другими словами, можно принять, что
Р( Х = k) = P ( Y = k ), (4)
если объем выборки мал по сравнению с объемом партии. При этом в качестве p в формуле (4) берут D/N. Близость результатов, получаемых с помощью биномиальной и гипергеометрической моделей, весьма важна с философской точки зрения. Дело в том, что эти модели исходят из принципиально различных философских предпосылок. В биномиальной модели случайность присуща каждой единице - она с какой-то вероятностью дефектна, а с какой-то - годна. В то же время в гипергеометрической модели качество определенной единицы детерминировано, задано, а случайность проявляется лишь в отборе, вносится экологом или экономистом при составлении выборки. В науках о человеке противоречие между аналогичными моделями выборки еще более выражено. Биномиальная модель предполагает, что поведение человека, в частности, выбор им определенного варианта при ответе на вопрос, определяется с участием случайных причин. Например, человек может случайно сказать «да», случайно—«нет». Некоторые философы отрицают присущую человеку случайность. Они верят в причинность и считают поведение конкретного человека практически полностью детерминированным. Поэтому они принимают гипергеометрическую модель и считают, что случайность отличия ответов в выборке от ответов во всей генеральной совокупности определяется всецело случайностью, вносимой при отборе единиц наблюдения в выборку.
Соотношение (4) показывают, что во многих случаях нет необходимости принимать чью-либо сторону в этом споре, поскольку обе модели дают близкие численные результаты. Отличия проявляются при обсуждении вопроса о том, какую выборку считать представительной. Является ли таковой выборка, составленная из 20 изделий, лежащих сверху в первом вскрытом ящике? В биномиальной модели - да, в гипергеометрической - нет.
Биномиальная модель легче для теоретического изучения, поэтому будем её рассматривать в дальнейшем. Однако при реальном контроле лучше формировать выборку, исходя из гипергеометрической модели. Это делают, выбирая номера изделий (для включения в выборку) с помощью датчиков псевдослучайных чисел на ЭВМ или с помощью таблиц псевдослучайных чисел. Алгоритмы формирования выборки встраивают в современные программные продукты по статистическому контролю.
Планы статистического контроля и правила принятия решений. Под планом статистического контроля понимают алгоритм, т.е. правила действий, на входе при этом - генеральная совокупность (партия продукции), а на выходе - одно из двух решений: «принять партию» либо «забраковать партию». Рассмотрим несколько примеров.
Одноступенчатые планы контроля (n,c): отобрать выборку объема n; если число дефектных единиц в выборке X не превосходит c, то партию принять, в противном случае забраковать. Число с называется приемочным.
Частные случаи: план (n,0) —партию принять тогда и только тогда, когда все единицы в выборке являются годными; план (n,1) - партия принимается, если в выборке все единицы являются годными или ровно одно - дефектное, во всех остальных случаях партия бракуется.
Двухступенчатый план контроля (n,a,b) + (m,c): отобрать первую выборку объема n; если число дефектных единиц в первой выборке X не превосходит a , то партию принять; если число дефектных единиц в первой выборке X больше или равно b, то партию забраковать; во всех остальных случаях, т.е. когда Х больше a, но меньше b, следует взять вторую выборку объема m; если число дефектных единиц во второй выборке Y не превосходит c, то партию принять, в противном случае забраковать.
Рассмотрим в качестве примера план (20, 0, 2) + (40, 0). Сначала берется первая выборка объема 20. Если все единицы в ней - годные, то партия принимается. Если две или больше - дефектные, партия бракуется. А если только одно - дефектное? В реальной ситуации в таких случаях начинаются споры между представителями предприятия и экологического контроля, или поставщика и потребителя. Говорят, например, что дефектная единица случайно попала в партию, что ее подсунули конкуренты или что при контроле случайно сделан неправильный вывод. Поэтому, чтобы споры пресечь, берут вторую выборку объема 40 (вдвое большего, чем в первый раз). Если все единицы во второй выборке - годные, то партию принимают, в противном случае - бракуют.
В реальной нормативно-технической документации - договорах на поставку, стандартах, технических условиях, инструкциях по экологическому контролю и т.д. - не всегда четко сформулированы планы статистического контроля и правила принятия решений. Например, при описании двухступенчатого плана контроля вместо задания приемочного числа с может стоять загадочная фраза "результат контроля второй выборки считается окончательным". Остается гадать, как принимать решение по второй выборке. Менеджер, администратор (государственный служащий), эколог или экономист, занимающийся вопросами экологического контроля или контроля качества, должен первым делам добиваться кристальной ясности в формулировках правил принятия решений, иначе ошибочные и необоснованные решения, а потому и убытки неизбежны.
Оперативная характеристика плана статистического контроля. Каковы свойства плана статистического контроля? Они, как правило, определяются с помощью функции f(p), связывающей вероятность p дефектности единицы контроля с вероятностью f(p) положительной оценки экологической обстановки (приемки партии) по результатам контроля. При этом вероятность p того, что конкретная единица дефектна, называется входным уровнем дефектности, а указанная функция называется оперативной характеристикой плана контроля. Если дефектные единицы отсутствуют, р = 0, то партия всегда принимается, т.е. f(0) = 1. Если все единицы дефектные, р = 1, то партия наверняка бракуется, f(1) = 0. Между этими крайними значениями р функция f(p) монотонно убывает.
Вычислим оперативную характеристику плана (n,0). Поскольку партия принимается тогда и только тогда, когда все единицы являются годными, а вероятность того, что конкретная единица - годная, равна (1‑р), то оперативная характеристика имеет вид
f(p) = Р(Х=0) = (1—р)n. (5)
Для плана (n,1) оперативная характеристика, как легко видеть, такова:
f(p) = Р(Х=0)+Р(Х=1) = (1—р)n + n (1—р)n-1 (6)
Оперативные характеристики для конкретных планов статистического контроля не всегда имеют такой простой вид, как в случае формул (5) и (6). Рассмотрим в качестве примера план (20, 0, 2) + (40, 0). Сначала найдем вероятность того, что партия будет принята по результатам контроля первой партии. Согласно формуле (5) имеем:
f1(p) = Р(Х=0) = (1—р)20.
Вероятность того, что понадобится контроль второй выборки, равна
Р(Х=1) = 20(1—р)19.
При этом вероятность того, что по результатам её контроля партия будет принята, равна
f2(p) = Р(Х=0) = (1—р)40.
Следовательно, вероятность того, что партия будет принята со второй попытки, т.е. что при контроле первой выборки обнаружится ровно одна дефектная единица, а затем при контроле второй—ни одной, равна
f3(p) = Р(Х=1) f2(p) = 20(1—р)19(1—р)40= 20(1—р)59.
Следовательно, вероятность принятия партии с первой или со второй попытки равна
f(p) = f1(p) + f3(p) = (1—р)20+ 20(1—р)59.
При практическом применении методов статистического приемочного контроля для нахождения оперативных характеристик планов контроля вместо формул, имеющих обозримый вид лишь для отдельных видов планов, применяют численные компьютерные алгоритмы или заранее составленные таблицы.
Риск поставщика и риск потребителя, приемочный и браковочный уровни дефектности. С оперативной характеристикой связаны важные понятия приемочного и браковочного уровней дефектности, а также понятия "риск поставщика" и "риск потребителя". Чтобы ввести эти понятия, на оперативной характеристике выделяют две характерные точки, делящие входные уровни дефектности на три зоны (области) - А, Б и В. В зоне А все почти всегда хорошо, а именно - почти всегда экологическая обстановка признается благополучной, почти все партии принимаются. В зоне В, наоборот, почти всегда все плохо, а именно - почти всегда экологический контроль констатирует экологические нарушения, почти все партии бракуются. Зона. Б - буферная, переходная, промежуточная, в ней как вероятность приемки, так и вероятность браковки заметно отличаются от 0 и 1. Для задания границ между зонами выбирают два малых числа—риск поставщика (производителя, предприятия) и риск потребителя (заказчика, системы экологического контроля) , при этом границы между зонами задают два уровня дефектности - приемочный pпp и браковочный pбр, определяемые из уравнений
f(pпp) = 1— , f(pбр) = . (7)
Таким образом, если входной уровень дефектности не превосходит pпp, то вероятность забракования партии мала, т.е. не превосходит . Приемочный уровень дефектности выделяет зону А значений входного уровня дефектности, в которой нарушения экологической безопасности почти всегда не отмечаются, партии почти всегда принимаются, т.е. соблюдаются интересы проверяемого предприятия (в экологии), поставщика (при контроле качества). Это - зона комфортности для поставщика. Если он обеспечивает работу (уровень дефектности) в этой зоне, то его практически никогда никто не потревожит.
Если же входной уровень дефектности больше браковочного уровня дефектности pбр, то нарушения почти наверняка фиксируются, партия почти всегда бракуется, т.е. экологи узнают о нарушениях, потребитель оказывается защищен от попадания к нему партий со столь высоким уровнем брака. Поэтому можно сказать, что в зоне В соблюдаются интересы потребителей - брак к ним не попадает.
При выборе плана контроля часто начинают с выбора приемочного и браковочного уровней дефектности. При этом выбор конкретного значения приемочного уровня дефектности отражает интересы поставщика, а выбор конкретного значения браковочного уровня дефектности - интересы потребителя. Можно доказать, что для любых положительных чисел и , и любых входных уровней дефектности pпp и pбр, причем pпp меньше pбр, найдется план контроля (n,c) такой, что его оперативная характеристика f(p) удовлетворяет неравенствам
f(pпp) > 1 - , f(pбр) < .
При практических расчетах обычно принимают = 0,05 (т.е. 5%) и = 0,1 (т.е. 10%).
Вычислим приемочный и браковочный уровни дефектности для плана (n,0). Из формул (5) и (7) вытекает, что
(1 - pпp)n = 1 - , pпp = 1 - (1 - )1/n.
Поскольку риск поставщика мал, то из известного соотношения математического анализа
вытекает приближенная формула
pпp
Для браковочного уровня дефектности имеем
pбр = 1 - 1/n.
При практическом применении методов статистического приемочного контроля формулами, имеющих обозримый вид лишь для отдельных видов планов, не пользуются. Для нахождения приемочных и браковочных уровней дефектности планов контроля вместо них применяют численные компьютерные алгоритмы или заранее составленные таблицы. Такие таблицы имеются в нормативно-технической документации или научно-технических публикациях.
Предел среднего выходного уровня дефектности.Обсудим судьбу забракованной партии продукции. В зависимости от ситуации эта судьба может быть разной. Партия может быть утилизирована. Например, забракованная партия гвоздей может быть направлена на переплавку. У партии может быть понижена сортность, и она может быть продана по более низкой цене (при этом результаты выборочного контроля будут использованы не для проверки того, что выдержан заданный уровень качества, а для оценки реального уровня качества). Наконец, партия продукции может быть подвергнута сплошному контролю (для этого обычно привлекают инженеров из всех заводских служб). При сплошном контроле все дефектные изделия обнаруживаются и либо исправляются на месте, либо извлекаются из партии. В результате в партии остаются только годные изделия. Такая процедура называется "контроль с разбраковкой".
При среднем входном уровне дефектности р и применении контроля с разбраковкой с вероятностью f(p) партия принимается (и уровень дефектности в ней по-прежнему равен р) и с вероятностью (1- f(p)) бракуется и подвергается сплошному контролю, в результате чего к потребителю поступают только годные изделия. Следовательно, по формуле полной вероятности средний выходной уровень дефектности равен
f1(p)= pf(p) +0(1 - f(p)) = pf(p).
Средний выходной уровень дефектности f1(p) равен 0 при р=0 и р=1, положителен на интервале (0;1), а потому достигает на нем максимума, который в теории статистического контроля называется пределом среднего выходного уровня дефектности (сокращенно ПСВУД):
ПСВУД =
Пример. Рассмотрим план (n,0). Для него f(p) = (1 - p)n и f1(p) = p(1-p)n. Чтобы найти ПСВУД, надо приравнять 0 производную среднего выходного уровня дефектности по среднему входному уровню дефектности:
В полученном уравнении корень р = 1 соответствует минимуму, а не максимуму. Поскольку непрерывная функция на замкнутом отрезке достигает максимума, то максимум достигается при
Следовательно,
ПСВУД = (8)
По выражению (8) могут быть проведены конкретные расчеты. Однако оно довольно громоздко. Его можно упростить, используя один замечательный предел из курса математического анализа, а именно:
(9)
Сравнивая соотношения (8) и (9), видим, что
ПСВУД =
Первая скобка равна 1/n, а вторая согласно соотношению (9) приближается к 0,368 при росте объема выборки. Поэтому получаем простую асимптотическую формулу
ПСВУД
Для более сложных планов ПСВУД рассчитывают с помощью более или менее сложных компьютерных программ.
При рассмотрении основ статистического контроля в настоящем пункте расчетные формулы удалось получить лишь для простейших планов, в основном для планов вида (n,0). Если ослабить требования и рассчитывать не на точные формулы, а на асимптотические, при , то можно справиться и с одноступенчатыми планами вида (n, c).
Асимптотическая теория одноступенчатых планов статистического контроля. Пусть Х - число дефектных единиц продукции в выборке объема n. Как уже отмечалось, распределение Х является биномиальным и имеет вид
P(Х = k) = Cnk pk (1—p)n - k ,
где Cnk - число сочетаний из n элементов по k,
p - входнойуровень дефектности.
Пусть используется одноступенчатый план контроля (n, c). Тогда оперативная характеристика этого плана имеет вид
Пусть Тогда по Закону Больших Чисел теории вероятностей (по теореме Бернулли)
(сходимость по вероятности). Значит, если с/n окажется заметно больше входного уровня дефектности р, то партии будут почти всегда приниматься, а если с/n окажется заметно меньше входного уровня дефектности р, то партии будут почти всегда отклоняться. Ситуация будет нетривиальной только там, где величины с/n и р близки друг к другу.
Хотя оперативная характеристика приближается с помощью сумм биномиальных вероятностей, целесообразно найти для нее приближение с помощью теоремы Муавра-Лапласа. Имеем цепочку тождественных преобразований:
Однако справа строит именно то выражение, которое участвует в теореме Муавра-Лапласа. Воспользовавшись равномерной сходимостью в этой теореме, можно записать, что
где (х) - функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1.
Последняя формула позволяет без труда написать асимптотические выражения для приемочного и браковочного уровней дефектности. Действительно, согласно определениям этих понятий
(10)
откуда с помощью элементарных преобразований получаем, что
(11)
Так как величины с/n и р близки друг к другу, то при переходе от формулы (10) к формуле (11) в подкоренных выражениях приемочный и браковочный уровни дефектности заменены на c/n (с точностью до бесконечно малых более высокого порядка).
Поскольку при практическом применении статистического приемочного контроля, как уже отмечалось, принимают = 0,05, =0,10, то в предыдущие формулы следует подставить =1,64 и Итак, итоговые формулы для приемочного и браковочного уровней дефектности имеют вид
Перейдем к задаче синтеза. Пусть заданы приемочный и браковочный уровни дефектности. Требуется построить одноступенчатый план, имеющий эти характеристики. Из формул (10) следует, в частности, что
(12)
Вычитая из первого уравнения второе, получаем, что
Следовательно, оценка необходимого объема выборки имеет вид
.
Для стандартных значений рисков = 0,05, =0,10 имеем:
(13)
С помощью уравнений (12) нетрудно найти оценку с* приемочного числа, заменив неизвестный объем выборки на его оценку n*. Будем использовать оценку
Для стандартного значения =0,10 имеем
(14)
Итак, по формуле (13) можно рассчитать оценку объема выборки, затем по формуле (14) найти оценку приемочного числа. Необходимо отметить, что результаты расчетов по рассматриваемым асимптотическим формулам отнюдь не всегда дают целые числа, поэтому необходима корректировка полученных результатов.
Полученные формулы позволяют решить сформулированную выше задачу - по заданным приемочному и браковочному уровням дефектности подобрать такой одноступенчатый план контроля, что его оперативная характеристика f(p) удовлетворяет неравенствам
f(pпp) > 1 - , f(pбр) < .
Поэтому при практической работе корректировка асимптотических результатов должна быть направлена на выполнение указанных неравенств.
Пример. Пусть pпp = 0,02, pбр = 0,09. Тогда по формуле (13) оценка объема выборки равна
Полученное число не является натуральным, поэтому вполне естественно откорректировать объем выборки до ближайшего целого, т.е. до n* = 72.
Оценку приемочного числа находим по формуле (14):
Полученное число не является целым, поэтому в качестве приемочного числа надо взять ближайшее целое, т.е. до 3.
Если объем выборки округлить до 73, то аналогично получим
При округлении снова получаем 3.
С помощью первого из уравнений (12) можно построить оценку с* на основе приемочного уровнея дефектности:
.
Подставив конкретные значения, получим практически ту же оценку, что и раньше:
.
Итак, в результате асимптотических расчетов найден одноступенчатый план (72, 3).
4.4.3. Некоторые практические вопросы принятия решений при статистическом контроле качества продукции и услуг
Познакомившись с некоторыми основными понятиями, подходами, и идеями теории статистического контроля качества, обсудим более практические стороны этой технико-экономической области.
Анализ и синтез планов контроля.На основе теории статистического контроля можно проанализировать планы контроля качества, имеющиеся в нормативно-технической документации (стандартах, технических условиях) и в договорах на поставку продукции и оказание услуг. Достаточно часто оказывается, что формулировки соответствующих разделов (разделов "Правила приемки", "Методы контроля" и др.) имеют различные недостатки и неточности, что может послужить в дальнейшем причиной к возникновению арбитражных ситуаций (т.е. решаемых через арбитражные или иные суды).
Если обсуждаемая система контроля качества выдерживает чисто логическую проверку, то наступает вторая стадия - анализ с точки зрения теории статистического контроля. На этой стадии рассчитывают характеристики применяемых планов контроля. О некоторых из них уже шла речь - приемочный и браковочный уровни дефектности, предел среднего выходного уровня дефектности. Есть и иные показатели, например, средний используемый объем выборки, средняя стоимость контроля, и т.п. Особенно важна прогнозируемая доля арбитражных ситуаций (споров между предприятиями) при используемой системе контроля.
На стадии анализа возможны неожиданные "открытия". Например, может оказаться, что существующая система контроля качества, хотя и является формально безупречной, но защищает лишь от приемки столь плохих партий продукции, в которых более половины единиц продукции дефектно (т.е. для применяемых планов контроля браковочный уровень дефектности больше 0,5). Или что система контроля защищает интересы поставщиков, у которых каждое пятое изделие является бракованным (приемочный уровень дефектности равен 0,2).
Замечание. До сих пор постоянно говорилось о контроле единиц и партий продукции. Однако нет никакого принципиального отличия с контролем услуг (медицинских, туристических, транспортных, образовательных, банковских и иных) или документации. Поэтому теория и практика статистического контроля качества продукции дает полезные рекомендации для банковского дела и бухгалтерского аудита. Надо только аккуратно заменить слова, описывающие предметную область применения теории статистического контроля.
После анализа ситуации с системой контроля естественно перейти к улучшению этой системы, к обоснованному выбору планов, к этапу синтеза. В зависимости от конкретных условий используются разнообразные подходы к выбору планов. Например, задают приемочный и браковочный уровни дефектности. В случае контроля с разбраковкой естественно использовать ограничения на предел среднего выходного уровня дефектности.
Обсудим подробнее оптимизационные постановки в статистическом приемочном контроле. Очевидно, имеется три вида затрат и потерь:
- затраты непосредственно на проведение контроля единиц продукции, включенных в выборку,
- потери в случае неверного решения о забраковании партии продукции (в которой на самом деле доля дефектной продукции соответствует требованиям нормативно-технической документации):
- потери в случае неверного решения о принятии партии продукции (в которой на самом деле доля дефектной продукции не соответствует требованиям нормативно-технической документации).
При этом первые два вида затрат непосредственно связаны с деятельностью предприятия, на котором производится продукция, третий вид затрат формируется там, где она потребляется. С этим связана принципиальная сложность подсчета затрат третьего вида. Особенно эта сложность проявляется тогда, когда попадание к потребителю дефектных изделий может привести к авариям с человеческими жертвами. Тогда в очередной раз возникает уже обсуждавшийся вопрос: сколько стоит человеческая жизнь? Только оценив потери здоровья и жизни в денежных единицах, можно сформировать функционал качества плана статистического контроля и затем оптимизировать его. К счастью, для большинства видов продукции вопрос о денежной оценке человеческой жизни не возникает. Проблема обычно "всего лишь" в том, что выпущенная продукция используется разнообразными конечными потребителями, а потому оценить эффект повышения доли ее дефектности затруднительно.
Поэтому наряду с функционалом качества, включающим все три вида затрат, рассматривают "условный" функционал на основе затрат первых двух типов, а на вероятность принятия партии продукции, в которой доля дефектной продукции не соответствует требованиям нормативно-технической документации, накладывают ограничение, т.е., грубо говоря, третий вид затрат учитывают в качестве ограничения.
Естественно также по-разному проводить контроль у поставщика (производителя) и потребителя (заказчика). Пусть для определенности поставщик используют план а потребитель - Тогда естественно зафиксировать в договоре о поставке, что Такая договоренность обеспечит тщательный контроль со стороны изготовителя и почти автоматическое подтверждение приемки со стороны потребителя (т.е. отсутствие спора).
Одна из распространенных догм состоит в том, что изготовитель и потребитель должны проводить контроль по одним и тем же планам контроля. Если план контроля и входной уровень контроля таков, что ситуация контроля относится к буферной зоне Б, т.е. вероятность приемки партии заметно отличается от 0 и 1, то указанная догма приводит к высокой вероятности спорных ситуаций. Пусть, например, оперативная характеристика равна 0,5. Пусть изготовитель принял партию (с вероятностью 0,5). После этого при независимом контроле у потребителя с той же вероятностью 0,5 она может быть отклонена и с вероятностью 0,5 принята. Значит, общий итог таков: 59% за то, что партия будет забракована у поставщика, 25% - за спорную ситуацию (поставщик принял, потребитель забраковал), 25% - за принятие и поставщиком и потребителем. Конечно, рассмотрен крайний случай - наиболее частое появление спорных ситуаций. Но реальное появление 10-15% арбитражных споров - это типовая ситуация в 1980-е годы.
Один из вариантов выбора планов контроля поставщиком и потребителем выглядит так. Стороны договариваются о некотором "приемлемом" входном уровне дефектности р*. Затем поставщик выбирает план контроля, используя р* какбраковочный уровень дефектности, а потребитель - рассматривая р* как приемочный уровень дефектности. Подробнее об анализе, синтезе и оптимизации планов статистического контроля рассказано в специальной литературе, в частности, в работах [6,8].
Усеченные планы.Рассмотрим план статистического контроля (60, 3). Пусть при проверке единицы продукции появляются в таком порядке: дефектная, дефектная, дефектная, дефектная,… Четыре дефектные единицы подряд! Надо ли дальше проверять выборку? Исходя из здравого смысла - нет. Ведь совершенно неважно, каковы будут результаты по остальным 59-и единицам продукции, окажутся они годными или дефектными - 4 дефектные единицы уже есть, и партию следует забраковать. Контроль мог бы быть перекрашен и тогда, когда при проверке 60 единиц все 60 окажутся годными - независимо от качества остальных 3 партию надо принимать.
Усеченные планы - это планы статистического контроля, в которых контроль разрешается прекращать, если итог (принятие или забракование партии) становится ясен ранее, чем проведен контроль всех включенных в выборку единиц продукции. Усеченные планы применяются, когда единицы продукции поступают на контроль последовательно, одна за другой (или группа за группой). Это не всегда так. Если, например, план (60, 3) применяется для контроля качества электролампочек, и все 60 лампочек ввернуты в гнезда на испытательном стенде и одновременно включены, то подход на основе усеченных планов применить нельзя.
Возможность применения усеченных планов должна быть явным образом указана в нормативно-технической документации и в договорах на поставку. Опишем юридический казус, связанный с усеченными планами. В ГОСТе на штангенциркули был предусмотрен план контроля (20,0). Органы Госстандарта проверяли завод "Точнометр" (название изменено). Проверили первый штангенциркуль - дефектен, второй - дефектен,…, десятый - дефектен. На этом комиссия остановилась, вполне резонно (с точки зрения здравого смысла) решив, что партия штангенциркулей должна быть забракована. Органы Госстандарта наложили на завод "Точнометр" штраф за выпуск некачественной продукции (в соответствии с действующим в то время правопорядком). Однако завод опротестовал это решение в суд. И суд удовлетворил протест, ссылаясь на то, что порядок проведения контроля качества штангенциркулей был нарушен! Бракоделы не смогли бы уйти от наказания, если бы в соответствующих документах была бы прописана возможность использования усеченных планов.
Выделение единиц бесформенной (жидкой, газообразной) продукции.Во всем предыдущем изложении постоянно встречается термин "единица продукции". Он вполне ясен, если речь идет об отдельных изделиях - дискетах, коробках спичек, патронах, бутылках минеральной воды, электробритвах, или отдельных деталях - болтах, гвоздях, пластмассовых дисках… Совершенно ясно, что многие виды продукции имеют иной вид - газообразный, жидкий или, как говорят, бесформенный (порошкообразный, желеобразный,…). Как быть с ним? В работе [9] предложен подход, позволяющий применить к бесформенной продукции методы статистического контроля качества.
Основное - это выделить единицу продукции. Она не должна быть очень малой, поскольку ясно, что в бесформенной продукции свойства вещества в близких точках близки. Основная идея состоит в том, чтобы взять некоторое количество пар точек, отстоящих друг от друга на определенное расстояние, и выяснить, есть связь (т.е. значим ли ранговый коэффициент корреляции Спирмена - см. главу 5) между значениями изучаемого свойства в этих парах точек или нет. Если связь есть, значит, точки разнесены на недостаточное расстояние, другими словами, точки относятся к одной и той же единице продукции. Поэтому расстояние между точками надо увеличить. Если связь уже не обнаруживается, то это значит, что они относятся к разным единицам продукции. В процессе увеличения расстояния тем самым была оценена величина ребра куба, в виде которого условно представляем себе единицу бесформенной продукции. Разбив бесформенную продукцию на единицы, можно применять описанные выше подходы для контроля ее качества (подробнее см. [9]).
Отбор случайной выборки при статистическом контроле качества продукции.Как и при любом выборочном обследовании, пр