Где находится скрытая информация чёрной дыры
Планковская шахматная доска с нулями и единицами, разбросанными по поверхности горизонта событий (рис. 9.2), является символической иллюстрацией результата Хокинга о количестве информации, хранящейся внутри чёрной дыры. Однако можем ли мы буквально воспринимать этот рисунок? Если математика говорит, что информационный запас чёрной дыры измеряется площадью её поверхности, то является ли это просто средством численного подсчёта, или же это означает, что поверхность чёрной дыры и есть место фактического хранения информации?
Этот глубокий вопрос десятилетиями изучался самыми знаменитыми физиками.[32]Ответ на него в сильной степени зависит от того, смотрите вы на чёрную дыру снаружи или изнутри — если снаружи, то есть веская причина полагать, что информация действительно находится на горизонте.
Любому, кто знаком с подробностями описания чёрных дыр в общей теории относительности, данное замечание покажется весьма странным. Общая теория относительности со всей ясностью говорит, что при падении сквозь горизонт событий чёрной дыры ничего особенного не происходит — нет никакой материальной поверхности, никаких указателей, никаких сигнальных огней — ничего, что каким бы то ни было образом отметило пересечение вами границы невозврата. Это следствие одного из самых простых, но, тем не менее, самых важных достижений Эйнштейна. Эйнштейн осознал, что когда вы (или любой объект) находитесь в состоянии свободного падения, вы становитесь невесомым; спрыгните с высокого трамплина, и весы, привязанные к вашим ногам, будут падать с вами, показывая ноль. По сути, вы избавляетесь от гравитации, позволив ей действовать в полную силу. Из этого Эйнштейн делает немедленный вывод. Основываясь на ваших ощущениях в непосредственно окружающей вас среде, вы не сможете отличить свободного падения на массивный объект от свободного парения в глубинах пустого пространства: в обеих ситуациях вы абсолютно невесомы. Конечно, если вы откроете глаза и увидите, скажем, быстро приближающуюся поверхность земли, лучшим решением будет побыстрее дёрнуть за кольцо парашюта. Но если вы оказались заключённым в маленькую капсулу без окон, вы никак не сможете отличить свободное падение от свободного плавания.{109}
В первые годы двадцатого столетия Эйнштейн ухватился за эту простую, но глубокую взаимосвязь между движением и гравитацией; спустя десять лет работы он оформил её в виде общей теории относительности. Мы используем эту взаимосвязь более скромным образом. Предположим, что вы находитесь в этой капсуле и свободно падаете не на Землю, а в чёрную дыру. Ровно такие же рассуждения говорят, что ваши чувства не смогут отличить падение от плавания в пустом пространстве. Это означает, что не будет происходить ничего особого или необычного, пока вы свободно падаете сквозь горизонт чёрной дыры. В конце концов, вы ударитесь о центр чёрной дыры, свободное падение прекратится и здесь ваши чувства, несомненно, это зафиксируют. Причём мало не покажется. Но до этого момента вам будет казаться, что вы бесцельно блуждаете в мрачных глубинах космоса.
Этот сюжет придаёт энтропии чёрной дыры ещё больше загадочности. Если при пересечении горизонта чёрной дыры вы ничего не обнаруживаете, ничего отличающего горизонт от внешнего пространства, то как он может хранить информацию? Ответ, к которому тяготеют учёные в течение последнего десятилетия, перекликается с темой дуальности, уже встречавшейся нам в предыдущих главах. Напомним, что дуальность возникает в ситуациях, где есть взаимодополнительные точки зрения, кажущиеся совершенно разными, но при этом внутреннее скованные единой физической цепью. Изображение Альберта и Мэрилин на рис. 5.2, является хорошей наглядной аналогией; математические примеры возникают из зеркальных форм дополнительных измерений в теории струн (глава 4) и на первый взгляд различных, но дуальных теорий струн (глава 5). В последние годы, следуя Сасскинду, исследователи осознали, что чёрные дыры являются другим примером того, когда дополнительные и при этом совершенно разные точки зрения приводят к фундаментальным открытиям.
Одна существенная точка зрения принадлежит вам, свободно падающему в чёрную дыру. Другая принадлежит удалённому наблюдателю, следящему за вашим путешествием в телескоп. Замечательно то, что по мере того как вы, как ни в чём не бывало, пересекаете горизонт чёрной дыры, удалённый наблюдатель видит совершенно иную последовательность событий. Всё дело в излучении Хокинга.[33]Когда удалённый наблюдатель измеряет температуру излучения Хокинга, он обнаруживает, что она очень мала, пусть 10−13 K, и это говорит о том, что чёрная дыра по размеру примерно равна чёрной дыре в центре нашей Галактики. Однако удалённый наблюдатель знает, что излучение холодное лишь потому, что идущие к нему от горизонта фотоны истратили много своей энергии, отчаянно преодолевая гравитационное притяжение чёрной дыры; как мы говорили ранее, фотоны устали. Наблюдатель приходит к выводу, что при вашем приближении к горизонту чёрной дыры вы будете встречать всё более свежие фотоны, которые только начали своё путешествие и пока остаются более энергичными и горячими. Действительно, наблюдатель видит, как вы, подойдя на волосок от горизонту, облучаетесь всё более и более интенсивным излучением Хокинга, до тех пор пока от вас не останутся лишь обугленные останки.
К счастью, ваши ощущения гораздо более приятные. Вы не видите, не ощущаете и вообще никак не знаете о существовании этого горячего излучения. Опять же, поскольку состояние свободного падения нейтрализует действие гравитации,{110} ваши ощущения неотличимы от плавания в пустом пространстве. Мы знаем наверняка, что перемещаясь в пустом пространстве, нельзя вот так вдруг вспыхнуть. Поэтому с вашей точки зрения вы удачно проходите сквозь горизонт и (менее удачно) сваливаетесь в сингулярность чёрной дыры, а с точки зрения удалённого наблюдателя вы сгораете в пылающей короне, окружающей горизонт.
Какая из этих двух точек зрения правильная? Сасскинд и другие утверждают, что обе. Безо всяких сомнений, это трудно совместить с обычной логикой — логикой, согласно который вы либо живой, либо нет. Но это не обычная ситуация. Даже больше, эти две столь разные точки зрения никогда нельзя будет сопоставить. Вы не сможете выбраться из чёрной дыры и доказать удалённому наблюдателю, что живы. И, как оказывается, удалённый наблюдатель не может прыгнуть в чёрную дыру и озадачить вас утверждением, что вас больше нет. Когда я сказал, что удалённый наблюдатель «видит», как вы сгораете под воздействием излучения Хокинга, это было упрощением. Удалённый наблюдатель, внимательно изучая дошедшее до него уставшее излучение, может восстановить историю вашей гибели в огне. Но требуется время, чтобы эта информация достигла его. Математические расчёты показывают, что к тому моменту, когда он сможет сделать вывод, что вы сгорели, у него не останется достаточно времени прыгнуть в чёрную дыру и поймать вас прежде, чем вас поглотит сингулярность. Точки зрения могут быть разными, но у физики есть встроенный предохранитель против парадоксов.
Что насчёт информации? С вашей точки зрения вся информация, хранящаяся в вашем теле и голове, и в вашем ноутбуке, проходит вместе с вами сквозь горизонт чёрной дыры. С точки зрения удалённого наблюдателя вся переносимая вами информация поглощается слоем излучения, непрерывно клубящимся вблизи горизонта. Биты, содержащиеся в вашем теле, голове и ноутбуке, могут сохраниться, но при этом совершенно перемешаются после отчаянного столкновения и смешения с обжигающе горячим горизонтом. Поэтому для удалённого наблюдателя горизонт событий является реальным местом, населённым реальными вещами, физическими носителями информации, схематично изображённой в виде шахматной доски (рис. 9.2).
Вывод такой, что удалённый наблюдатель — мы — заключает, что энтропия чёрной дыры определяется площадью её горизонта, потому что горизонт является местом её хранения. Такое утверждение видится совершенно разумным. Однако не забывайте, насколько неожиданным является то, что объём чёрной дыры не является хранилищем информации. Мы сейчас увидим, что полученный результат не просто отражает одно из особых свойств чёрных дыр. Чёрные дыры говорят нам не просто о том, как чёрные дыры хранят информацию. Они информируют нас о хранении информации в произвольном контексте. Отсюда начинается прямая дорога к голографическому принципу.
За пределами чёрных дыр
Рассмотрим произвольный объект или набор объектов — набор библиотек Конгресса, все компьютеры корпорации Google, архивы ЦРУ, — расположенных в некоторой области пространства. Представим для простоты, что эта область окружена воображаемой сферой (рис. 9.3а ). Теперь допустим, что полная масса объектов по сравнению с заполняемым ими объёмом настолько заурядна, что её даже близко не хватит для образования чёрной дыры. Такова постановка задачи. А теперь важный вопрос: какое максимальное количество информации может храниться в этой области пространства?
Рис. 9.3. а ) Набор объектов, хранящих информацию и расположенных внутри чётко очерченной области пространства; б ) Расширение информационной ёмкости данной области; в ) Когда количество вещества превосходит некоторую пороговую величину (её можно вычислить, исходя из общей теории относительности){111}, данная область становится чёрной дырой
Ответ дают Второй закон и чёрные дыры, ставшие неожиданными партнёрами в этом вопросе. Представьте, что в область пространства добавляют вещество с целью увеличения её информационной ёмкости. Например, вы можете принести в корпорацию Google чипы с большим объёмом памяти или увесистые жёсткие диски; а в библиотеку Конгресса можно принести книги или электронные читалки. Поскольку даже сырое вещество несёт информацию — молекулы пара находятся здесь или там, они движутся со скоростью такой или сякой, — вы забиваете каждый уголок данной области пространства любой материей, какая только попадётся под руку. Пока не будет достигнута критическая отметка. В какой-то момент данная область станет настолько плотно набитой всякой всячиной, что если добавить ещё одно маленькое зёрнышко, то пространство внутри начнёт темнеть и превращаться в чёрную дыру. Когда такое случится, игра закончится. Размер чёрной дыры определяется её массой, поэтому при попытке увеличить её информационную ёмкость путём добавления большего количества вещества чёрная дыра начнёт увеличиваться в размере. Поскольку мы хотим рассмотреть информацию, которая может содержаться в данном фиксированном объёме пространства, такая ситуация выйдет за рамки поставленной задачи. Нельзя увеличить информационную ёмкость чёрной дыры, не заставив её при этом расти.{112}
Следующие два наблюдения выводят нас на финишную прямую. Второй закон гарантирует, что энтропия возрастает в течение всего процесса, поэтому информация, скрытая внутри жёстких дисков, электронных читалок, старомодных бумажных книг и во всём остальном, что вы поместили в данную область пространства, меньше, чем информация, скрытая в чёрной дыре. Результаты Бекенштейна и Хокинга гласят, что скрытая информация чёрной дыры задаётся площадью её горизонта событий. Более того, поскольку вы работали очень аккуратно, так чтобы не выйти за исходную область пространства, то горизонт событий чёрной дыры совпадает с границей данной области и энтропия чёрной дыры равна площади окружающей эту область поверхности. Таким образом, мы получаем важный результат: количество информации внутри некоторой области пространства, хранящейся в любых объектах любой формы, всегда меньше площади окружающей эту область поверхности (измеренной в планковских единицах) .
Вот к такому выводу мы пришли. Отметим, что хотя чёрные дыры играют главную роль в этих рассуждениях, весь анализ применим к любой области пространства, независимо от того, есть там чёрная дыра или нет. Если максимизировать информационную ёмкость данной области, то возникнет чёрная дыра, но если не превышать лимит добавляемого вещества, чёрная дыра не сформируется.
Поспешу добавить, что предел информационной ёмкости не должен нас заботить с практической точки зрения. Если сравнивать с современными рудиментарными накопителями, то потенциальная информационная ёмкость поверхности пространственной области просто чудовищна. Стопка из пяти стандартных терабайтных жёстких дисков легко умещается внутри сферы радиуса 50 сантиметров, поверхность которой покрывается 1070 планковскими клетками. Таким образом, информационная ёмкость этой поверхности составляет примерно 1070 бит, что равно миллиарду триллионов триллионов триллионов триллионов терабайтов, и поэтому несоизмеримо превышает всё, что вы можете купить. В Силиконовой долине подобные теоретические ограничения никого особо сильно не беспокоят.
Всё же, если задумываться об устройстве Вселенной, ограничения информационной ёмкости говорят о многом. Представьте любую область пространства, например, комнату, в которой я пишу эту книгу, или комнату, в который вы читаете её. Примите точку зрения Уилера и представьте, что всё происходящее в этой области сводится к некоторым информационным процессам — информация об устройстве окружающей среды в данный момент трансформируется посредством физических законов в информацию об устройстве окружающей среды через секунду, минуту или через час. Поскольку наблюдаемые нами физические процессы, а также процессы, которые нами управляют, по всей видимости, происходят внутри данной области, то естественно ожидать, что переносимая этими процессами информация также находится внутри этой области. Но только что полученные результаты предлагают альтернативный взгляд. Обнаруженная связь между информацией и площадью поверхности чёрной дыры выходит далеко за рамки простого численного расчёта; есть конкретный смысл, в котором информация хранится на поверхности чёрной дыры. Сасскинд и т’Хоофт указали, что данное рассуждение имеет совершенно общий характер: поскольку информация, необходимая для описания физических явлений внутри любой заданной области пространства, может быть полностью представлена данными на окружающей её поверхности, то существует причина думать, что эта поверхность и является тем местом, где происходят фундаментальные физические процессы. Как предлагают эти смелые учёные, привычная нам трёхмерная реальность связана голографической проекцией с удалёнными двумерными физическими процессами.
Если эти рассуждения верны, тогда существуют физические процессы, происходящие на некоторой удалённой поверхности, которые, подобно тянущему за ниточки кукловоду, управляют процессами, происходящими в моей голове и моих руках, в тот самый момент, когда я печатаю эти слова на моём компьютере. Наш опыт здесь и удалённая реальность там образуют крепкую связку параллельных миров. Явления в этих двух мирах — я буду называть их голографическими параллельными вселенными — настолько полно связаны друг с другом, что происходящие в каждом из них эволюции будут так же крепко связаны, как я и моя тень.
Мелким шрифтом
То, что привычная нам реальность может быть отражением, а может быть даже порождением явлений, происходящих на далёкой поверхности меньшей размерности, является одним из самых неожиданных открытий во всей теоретической физике. Как можно быть уверенным в справедливости голографического принципа? Мы оказались на территории, лежащей в самой глубине теоретической физики, и опираемся почти целиком на разработки, которые не были проверены экспериментально, поэтому конечно же есть основания для скептицизма. Есть много причин сбиться с курса. Действительно ли чёрные дыры обладают ненулевой температурой и энтропией, и если так, согласуются ли эти значения с теоретическими предсказаниями? Действительно ли информационная ёмкость некоторой области пространства определяется количеством информации, которая может быть размещена на окружающей её поверхности? И для такой поверхности является ли один бит на одну планковскую клетку пределом на самом деле? Мы думаем, что ответ на каждый из этих вопросов положительный, потому что есть непротиворечивая, совместимая и аккуратно выстроенная теоретическая система, с которой такие выводы прекрасно согласуются. Но поскольку ни одна из этих идей не ложилась под экспериментальный скальпель, вполне возможно (хотя, на мой взгляд, совершенно невероятно), что будущие открытия убедят нас, что один или более из этих существенных промежуточных шагов являются неверными. Тогда, возможно, придётся отказаться от голографической идеи.
Другой важный момент состоит в том, что в наших рассуждениях речь шла об области пространства, об окружающей её поверхности, и о заполняющей их информации. Однако, поскольку акцент был сделан на энтропию и Второй закон — каждый из которых касается в первую очередь величины информации в данном контексте — мы пропустили детали того, как эта информация хранится или физически реализуется. Когда мы говорим об информации, которая находится на сфере, окружающей некоторую область пространства, то что это на самом деле означает? Как информация проявляет себя? Какую форму она приобретает? До какой степени мы можем развить подробный словарь по переводу явлений, происходящих на границе, в явления, происходящие в объёме?
Физикам ещё предстоит создать общую схему рассмотрения этих вопросов. Считая, что как гравитация, так и квантовая механика играют центральную роль в подобных рассуждениях, можно было бы ожидать, что возможная модель для теоретических исследований данных вопросов появится в теории струн. Однако, когда т’Хоофт сформулировал голографический принцип, он стал сомневаться, что теория струн поможет в развитии этой области, заметив, что «на планковских расстояниях природа гораздо более безумна, чем могут себе представить струнные теоретики».{113} Менее чем десятилетие спустя струнная теория доказала, что т’Хоофт ошибался, но его идеи верны. В эпохальной статье одного молодого теоретика было показано, что теория струн приводит к подробной реализации голографического принципа.
Теория струн и голография
Когда в 1998 году на ежегодной международной конференции по теории струн в университете Калифорнии в Санта-Барбаре объявили мой доклад, я, выходя к доске, сделал нечто, чего никогда ранее не делал, и подозреваю, больше никогда не сделаю. Я повернулся к аудитории, положил правую руку на левое плечо, затем левую руку на правое плечо, после чего опустил по очереди обе руки на задние карманы брюк, подпрыгнул, развернулся к доске и под сопровождающий меня смех зала сделал три оставшихся шага до трибуны, где и начал свой доклад. Аудитория поняла шутку. Накануне вечером на банкете участники конференции праздновали с песнями и танцами — только так, как могут физики, — выдающийся результат аргентинского струнного теоретика Хуана Малдасены. Мы придумали слова что-то типа:
Чёрные дыры были большой мистикой,
а теперь мы с помощью D-бран считаем D-энтропию,
и распевали их на мотив «Макарены», известного танцевального хита начала 1990-х годов. Мы выражали восторг сильнее, чем участники национального съезда демократов приветствовали Эла Гора, и наша песня ничем не уступала оригинальному исполнению «Лос дель Рио» по накалу страстей. На конференции я был один из немногих, доклад которых не был посвящён открытию Малдасены, поэтому, выйдя к доске на следующий день, я решил предварить свой доклад персональным танцем одобрения.
Сейчас, спустя десять лет, многие согласятся, что ни одно достижение в теории струн не было настолько существенным и важным. Одним из следствий результата Малдасены, имеющим прямое отношение к нашим рассуждениям, было то, что в некотором модельном варианте результат Малдасены явно выражал голографический принцип, давая первый математический пример голографических параллельных вселенных . Для этого Малдасена рассмотрел теорию струн во вселенной, которая отличается по форме от нашей Вселенной, но которую было легче анализировать для поставленных целей. Математически отличие состояло в том, что у вселенной была граница — непроницаемая поверхность, полностью охватывающая внутренность пространства. Сосредоточившись на граничной поверхности, Малдасена убедительно доказал, что всё, происходящее внутри этой особой вселенной, является отражением действующих на границе законов и процессов.
И хотя метод Малдасены не применим, скорее всего, напрямую ко вселенной с нашей формой, этот результат имел решающее значение, потому что благодаря этому появился прямой математический способ количественного анализа идей, касающихся голографических вселенных. Результаты таких исследований привлекли внимание большого количества физиков, которые раньше относились к голографическому принципу с подозрением, и таким образом вызвали шквал исследований, которые привели к тысячам статей и значительно углубили наше понимание. Самое захватывающее, что теперь есть основание думать, что связь между этими теоретическими открытиями и физикой в нашей Вселенной может быть установлена. Через несколько лет эта связь вполне может привести к экспериментальной проверке голографических идей.
Оставшаяся часть этого и следующего раздела будет посвящена объяснению того, как Малдасена пришёл к этому открытию; эта часть изложения самая трудная. Я начну с краткого резюме в виде шпаргалки, но если вы почувствуете, что уже насытились деталями, можете без зазрения совести перейти к последнему разделу.
Идея Малдасены состояла в использовании новой версии дуальности, которую мы обсуждали в главе 5. Напомним, что там мы рассматривали вселенные на бране, представимые в виде нарезанных ломтей хлеба. Малдасена рассмотрел с двух дополнительных точек зрения свойства плотной стопки трёхмерных бран (рис. 9.4). С одной, «внутренней» точки зрения, рассматриваются струны, которые движутся, вибрируют и извиваются вдоль этих бран. С другой, «внешней», точки зрения рассматривается, какое гравитационное воздействие браны оказывают на своё непосредственное окружение, подобно тому как Солнце и Земля влияют на своё окружение. Малдасена показал, что обе точки зрения описывают одну и ту же физическую ситуацию, но с разных сторон. Внутренняя точка зрения рассматривает движение струн на стопке бран, а внешняя точка зрения рассматривает движение струн в области искривлённого пространства, ограниченного стопкой бран. Приравнивая обе точки зрения, Малдасена обнаружил явную связь между физикой внутри области с физикой на границе области — была найдена подробная реализация голографии. В этом состоит основная идея.
Рис. 9.4. Набор близко расположенных три-бран, к которым прикреплены концы открытых струн, а замкнутые струны двигаются внутри «балка»
А если добавить красок, то ситуация описывается следующим образом.
Рассмотрим, говорит Малдасена, стопку из три-бран, настолько близко расположенных друг к другу, что они выглядят как монолитная плита (рис. 9.4), и изучим поведение движущихся в этой среде струн. Вспомним, что есть два типа струн — открытые, как кусочки ниточек, и замкнутые, как колечки. Вспомним также, что концы открытых струн могут скользить по бранам, но не могут отрываться от них, а замкнутые струны не имеют концов и поэтому могут свободно перемещаться по всему пространству. На теоретико-струнном жаргоне мы говорим, что открытые струны прикреплены к бранами, а замкнутые струны могут двигаться по всему объёму пространства (или в «балке» ).
Сначала Малдасена математически проанализировал струны с низкой энергией — то есть струны, вибрирующие относительно медленно. И вот почему: сила гравитации между двумя любыми объектами пропорциональна массе каждого объекта; это же справедливо для гравитационного притяжения между любыми двумя струнами. Струны с низкой энергией обладают малой массой и поэтому практически не реагируют на гравитационное притяжение. Таким образом, сфокусировавшись на низкоэнергетических струнах, Малдасена пренебрёг влиянием гравитации. Это стало существенным упрощением. В главе 5 мы видели, что в теории струн гравитационное взаимодействие переносится замкнутыми струнами. Поэтому пренебречь силой гравитации эквивалентно пренебречь влиянием замкнутых струн на всё, с чем они могут встретиться, — в особенности, с живущими на стопке из бран ниточками открытых струн. Таким образом, добившись, что два типа струн, открытые и замкнутые, не оказывают влияния друг на друга, Малдасена добился того, что их можно анализировать по отдельности.
Затем Малдасена изменил точку зрения и стал анализировать ту же самую ситуацию под другим углом. Вместо того чтобы считать три-браны вместилищем для движения открытых струн, он рассмотрел три-брану как самостоятельный объект, у которого есть присущая ему масса и который, таким образом, искривляет вокруг себя пространство и время. Малдасене повезло, потому что к тому времени другими физиками были уже получены результаты, где были заложены основы для такого альтернативного рассмотрения. В этих работах было установлено, что при увеличении числа бран в стопке их коллективное гравитационное поле возрастает. В конце концов плита из бран ведёт себя подобно чёрной дыре, но не обычной, а бранообразной, поэтому такая стопка была названа чёрной браной . Как и в случае чёрных дыр, если приблизиться слишком близко к чёрной бране, то вырваться оттуда не получится. И так же как в случае чёрных дыр, если наблюдать издалека за приближением какого-нибудь объекта к чёрной бране, то дошедший до вас свет будет точно так же измотан борьбой с гравитационным притяжением чёрной браны. Это приведёт к тому, что объект будет выглядеть замедляющимся и теряющим энергию.{114}
В этом контексте Малдасена вновь сосредоточился на низкоэнергетических свойствах вселенной, в которой содержится такая чёрная плита. Во многом аналогично тому, как он действовал в первом подходе, он осознал, что в низкоэнергетической физике присутствуют две составляющие, которые можно анализировать независимо друг от друга. Первая — это медленно вибрирующие замкнутые струны, движущиеся в балке пространства, которые являются очевидными переносчиками низкой энергии. Вторая составляющая возникает благодаря присутствию чёрной браны. Представьте теперь, что вы находитесь далеко от чёрной браны и в вашем распоряжении имеется вибрирующая замкнутая струна, энергия которой может быть произвольно большой. Затем представьте, что струна опускается на горизонт событий, а вы наблюдаете за ней с безопасного расстояния. Как говорилось ранее, чёрная брана будет понижать энергию струны; свет, доходящий до вас, будет изображать струну как в замедленном кино. Таким образом, вторыми низкоэнергетическими переносчиками являются любые вибрирующие струны, которые находятся достаточно близко к горизонту событий чёрной браны.
Наконец, Малдасена сравнил оба подхода. Он заметил, что, поскольку они описывают одну и ту же стопку бран, только с разных точек зрения, они обязаны совпадать. Каждое описание вовлекает низкоэнергетические замкнутые струны, движущиеся в балке пространства, поэтому в этой части совпадение очевидно. Однако согласованность должна быть и в остальных частях каждого описания.
Удивительно, но именно так и происходит!
Оставшийся кусок первого описания состоит из низкоэнергетических открытых струн, движущихся на три-бранах. Вспомним из главы 4, что низкоэнергетические струны хорошо описываются квантовой теорией поля точечных частиц, именно то, что нам здесь требуется. Этот тип квантовой теории поля привлекает ряд хитроумных математических построений (чего стоит только одно название — конформно-инвариантная суперсимметричная квантовая калибровочная теория поля ), но нам важны две её характеристики, которые можно достаточно легко понять. Во-первых, отсутствие замкнутых струн гарантирует отсутствие гравитационного поля. Во-вторых, поскольку струны движутся только на плотно упакованных в стопку бранах, квантовая теория поля живёт в трёх пространственных измерениях (что в совокупности с одним временным измерением даёт четыре пространственно-временных измерения).
Что касается второго описания, то оставшийся кусок состоит из произвольно вибрирующих замкнутых струн, которые, однако, оказались достаточно близко к горизонту событий чёрной браны, а потому кажутся вялыми — то есть как будто они обладают низкой энергией. Такие струны, хотя и ограниченные близостью к чёрной бране, по-прежнему вибрируют и движутся сквозь девять пространственных измерений (что в совокупности с одним временным измерением даёт десять пространственно-временных измерений). Поскольку этот сектор построен из замкнутых струн, в нём присутствует гравитационное взаимодействие.
Однако сколь бы разными не казались два подхода, они описывают одну физическую ситуацию и поэтому должны быть согласованы. Это приводит к совершенно невероятному заключению. Квантовая теория поля (определённого вида) точечных частиц без гравитации в четырёх пространственно-временных измерениях (первая точка зрения) описывает такую же физику, что и теория струн с гравитацией , где струны движутся внутри определённой области десятимерного пространства-времени. Звучит так же странно, как... даже не знаю что — сколько я не пытался, я не смог найти две менее похожие вещи в реальном мире, чем эти две теории. Однако Малдасена доверился математике в обсуждавшемся выше смысле и, сделав такой вывод, попал в самую точку.
Исключительная неожиданность этого результата — и смелость утверждения — не умаляется тем фактом, что он моментально находит своё место в цепочке рассуждений, приведённых выше в этой главе. Как схематично показано на рис. 9.5, гравитация чёрной плиты из бран искривляет окрестность рассматриваемой области в форму десятимерного пространства-времени (детали вторичны, но искривлённое пространство-время называется пятимерным анти-де ситтеровское пространством на пятимерную сферу ); причём плита из чёрных бран является границей этого пространства. Поэтому результат Малдасены состоит в том, что теория струн в балке этого пространства-времени идентична квантовой теории поля, живущей на его границе .{115}
Рис. 9.5. Схематическая иллюстрация дуальности между теорией струн внутри некоторого пространства-времени и квантовой теорией поля на его границе
Так возникает голография.
Малдасена построил самосогласованную математическую лабораторию, в которой, помимо всего прочего, физики могли исследовать конкретные детали голографической реализации физических законов. В течение нескольких месяцев появились две статьи, одна из них принадлежала Эдварду Виттену, а вторая была написана совместно Стивеном Габсером, Игорем Клебановым и Александром Поляковым, которые вывели результат Малдасены на новый уровень понимания. В них был создан точный математический словарь для перевода с одной теории на другую: если задан физический процесс на границе браны, то словарь говорит, как он будет выглядеть в балке внутри объёма и наоборот. С помощью этого словаря в умозрительной вселенной голографический принцип становится точным и определённым. На границе вселенной информация закодирована в квантовых полях. После математического перевода она предстаёт как струнный сюжет, разворачивающийся внутри объёма.
Математический словарь сам по себе подчёркивает голографическую аналогию. Обычная голограмма не похожа на трёхмерный объект, который она порождает. На её поверхности видны лишь линии, дуги, завитки, вытравленные на пластиковой пластинке. Однако сложное преобразование, выполняемое при прохождении лазерного луча сквозь пластинку, переводит эти отметины в узнаваемое трёхмерное изображение. Это означает, что пластиковая голограмма и трёхмерное изображение содержат одинаковые данные, даже если информация в одной из них нераспознаваема с точки зрения другой. Аналогичным образом, при анализе квантовой теории поля на границе вселенной Малдасены не видно, что у неё есть явные сходства с теорией струн, живущей в балке. Если физику показать две теории и умолчать о связи, которую мы только что выяснили, то скорее всего он сделает вывод, что они независимы. Тем не менее математический словарь, связывающий обе теории — и работающий как лазер в обычных голограммах, — со всей определённостью говорит, что всё, происходящее в одной теории, имеет своё воплощение в другой. А само изучение этого словаря выявляет, что подобно обычным голограммам, информация в каждой из этих теорий оказывается зашифрованной при переводе на другой язык.
В качестве особенно впечатляющего примера рассмотрим задачу, которую исследовал Виттен: как будет выглядеть обычная чёрная дыра, находящаяся внутри вселенной Малдасены, с точки зрения теории на границе. Напомним, что теория на границе не содержит гравитации, и потому чёрная дыра трансформируется в нечто совсем не похожее. Виттен показал, что подобно тому как за устрашающим видом волшебника Изумрудного города скрывался обыкновенный человек, так и ненасытная чёрная дыра является голографической проекцией чего-то совершенно обычного — разгорячённого газа частиц в теории на границе (рис. 9.6). Подобно настоящей голограмме и порождаемому ею изображению, две теории — чёрная дыра внутри и разогретая квантовая теория поля на границе — ничем друг на друга не похожи, но при этом они несут одинаковую информацию.[34]
Рис. 9.6. Голографическая эквивалентность применительно к чёрной дыре в «балке» пространства-времени приводит к разогретому газу частиц и излучения на границе рассматриваемой области
В притче Платона о пещере наши чувства воспринимают лишь плоскую, усечённую версию истинной, более богатой реальности. Плоский мир Малдасены совсем другой. Далёкий от какого-либо усечения, он представляет события во всей полноте. Это совершенно другая история, отличная от того, к чему мы привыкли. Но этот плоский мир может вполне оказаться первичным.