Довольно о принципах; что же происходит на практике?
Распределение собак в данном районе зависит от ряда условий, например: от культурного слоя, финансовых возможностей и просто обычной случайности. В силу этих сложностей чтобы сделать верный статистический прогноз, лучше всего обратиться за нужными данными в местный клуб собаководов, избежав тем самым размышлений, откуда взялось именно такое распределение собак. К сожалению, никто не ведёт перепись населения мультивселенных, поэтому такая возможность оказывается недоступной. Мы вынуждены опираться на наши теоретические идеи о том, как может возникнуть данная мультивселенная с тем или иным распределением составляющих её вселенных.
Ландшафтная мультивселенная, основанная на вечной инфляции и теории струн, вполне подходит для подобных исследований. В этом сценарии двумя генераторами новых вселенных являются инфляционное расширение и квантовое туннелирование. Напомним, как это происходит: вселенная в процессе инфляции, соответствующая той или иной долине в струнном ландшафте, квантово туннелирует сквозь одну из ближайших гор и оказывается в другой долине. Из первой вселенной — с определённым набором свойств, таких как константы взаимодействий, характеристики частиц, значение космологической постоянной и так далее — возникает расширяющийся пузырёк новой вселенной (см. рис. 6.7) с новым набором физических свойств, после чего процесс продолжается.
Подобные туннелирования, являясь квантовыми процессами, обладают вероятностным характером. Нельзя предсказать, где и когда они произойдут. Но можно предсказать вероятность того, что туннелирование произойдёт в любом заданном интервале времени и в любом заданном направлении — вероятность этого зависит от конкретных свойств струнного ландшафта, таких как высоты различных вершин и долин (то есть значения соответствующих космологических постоянных). Более вероятные туннелирования происходят чаще, что находит отражение в возникающем распределении вселенных. Поэтому стратегия должна быть следующей: с помощью математического аппарата инфляционной космологии и теории струн попытаться вычислить распределение вселенных с различными физическими свойствами внутри ландшафтной мультивселенной.
Загвоздка в том, что до сих пор это никому не удавалось сделать. Струнный ландшафт в том виде, как мы его сейчас понимаем, обладает необъятным количеством вершин и долин, поэтому вычислить свойства возникающей мультивселенной является невероятно трудной математической задачей. Пионерские работы космологов и струнных теоретиков значительно расширили наше понимание, однако следует признать, что исследования в этой области всё ещё находятся на начальном уровне.{81}
Чтобы продвинуться дальше, сторонники мультивселенной предлагают добавить в анализ ещё один важный компонент. Это учёт эффекта отбора, о котором говорилось в предыдущей главе — антропного принципа.
Предсказания в мультивселенной III:
Антропный принцип
Многие вселенные в заданной мультивселенной обречены на безжизненность. Как мы видели, причина в том, что при отклонении значений фундаментальных параметров от наблюдаемых значений разрушаются условия, благоприятствующие возникновению жизни.{82} Сам факт нашего существования означает, что мы никогда не сможем оказаться в любой из таких безжизненных областей, и поэтому нечего дальше объяснять, почему мы не видим свойственную им комбинацию параметров. Если есть некий вариант мультивселенной, из которого гарантированно следует существование единственной вселенной с благоприятными условиями для возникновения жизни, то нам повезло. Мы сможем математически вывести свойства такой вселенной. Если они отличаются от измеряемых свойств нашей Вселенной, то этот вариант мультивселенной будет отброшен. Если же полученные свойства согласуются с нашими, это станет впечатляющим подтверждением антропного подхода, а также приведёт к неимоверному расширению существующей картины мира.
В более правдоподобном случае, когда вселенная с благоприятными условиями для возникновения жизни не является единственной, ряд теоретиков (таких как Стивен Вайнберг, Андрей Линде, Александр Виленкин, Джордж Эфстатиу и многие другие) ратуют за расширенный статистический подход. Вместо вычисления относительного соотношения разных вселенных в рамках мультивселенной, они предлагают вычислить число их обитателей — физики обычно называют их наблюдателями, — которые могли бы оказаться в той или иной вселенной. В некоторых вселенных условия вряд ли совместимы с жизнью, поэтому наблюдателей там будет немного, подобно случайному кактусу в безжизненной пустыне; вселенные с более благоприятными условиями будут изобиловать наблюдателями. Идея в том, что подобно тому как на основе данных по переписи собак можно предсказать, какая собака нам встретится сегодня, на основе данных по переписи наблюдателей можно предсказывать свойства, которые типичный житель мультивселенной — например, вы и я, согласно логике этого подхода, — ожидает увидеть.
Конкретный пример был проанализирован в 1997 году Вайнбергом и его соавторами Хьюго Мартелом и Полем Шапиро. Рассмотрев мультивселенную с космологической постоянной, варьирующейся от одной вселенной к другой, они вычислили, насколько возможной будет жизнь в каждой из них. Эта трудная задача поддалась решению при помощи трюка, предложенного Вайнбергом (см. главу 6): вместо жизни как таковой надо рассматривать образование галактик. Чем больше галактик, тем больше планетарных систем и, следовательно, согласно исходному предположению, бо́льшая вероятность жизни, например, разумной жизни. Тогда, как выяснил в 1987 году Вайнберг, даже совсем крошечная космологическая постоянная порождает достаточное гравитационное отталкивание, способное нарушить образование галактик, поэтому имеет смысл рассматривать лишь те области мультивселенной, в которых космологическая постоянная достаточно мала. Отрицательная космологическая постоянная соответствует вселенным, которые схлопываются прежде, чем успевают образоваться галактики, поэтому подобными областями мультивселенной также можно пренебречь. Таким образом, антропный принцип фокусирует наше внимание на части мультивселенной с очень узким диапазоном значений космологической постоянной; как обсуждалось в главе 6, вычисления показывают, что если в заданной вселенной имеются галактики, то её космологическая постоянная не должна превосходить приблизительно двухсоткратную критическую плотность (что эквивалентно по массе примерно 10−27 грамма на кубический сантиметр пространства, или что составляет примерно 10−121 в планковских единицах).{83}
Для вселенных, космологическая постоянная которых находится в этих пределах, Вайнберг, Мартел и Шапиро провели более подробные вычисления. Они выяснили, какая доля материи в каждой такой вселенной будет слипаться в сгустки в течение космологической эволюции, что является ключевым шагом на пути образования галактик. Они обнаружили, что если значение космологической постоянной находится очень близко к верхней границе допустимого диапазона, будет образовываться сравнительно немного сгустков материи, потому что отталкивающее действие космологической постоянной будет проявляться подобно сильному ветру, разгоняющему сгустки пыли. Если же значение космологической постоянной находится вблизи нижней границы допустимого диапазона, то есть нуля, то может возникнуть значительное количество сгустков материи, потому что разрушительное влияние космологической постоянной минимизировано. Это означает, что с высокой долей вероятности вы окажетесь во вселенной, космологическая постоянная которой почти равна нулю, так как подобные вселенные содержат большое количество галактик, а потому, следуя логике этого подхода, велик шанс возникновения жизни. Есть совсем небольшая вероятность оказаться во вселенной с космологической постоянной вблизи верхней границы допустимого диапазона значений, что составляет примерно 10−121, ибо такие вселенные населены небольшим количеством галактик. И существует некая скромная вероятность того, что вы окажетесь во вселенной с промежуточной космологической постоянной между двумя крайними значениями.
Используя количественные данные этих результатов, Вайнберг и его соавторы рассчитали космический аналог встречи с 27-килограммовым лабрадором во время обычной прогулки по району, то есть они вычислили значение космологической постоянной, каким оно видится среднестатистическому наблюдателю мультивселенной. И каким был ответ? Чуть больше найденного в измерениях по сверхновым, но примерно того же порядка. Они оценили, что примерно от 1 из 10 до 1 из 20 обитателей мультивселенной будут ощущать примерно то же, что и мы, измеряя при этом значение космологической постоянной в их вселенных, равное 10−123.
И хотя нам бы хотелось видеть более высокий процент, полученный результат всё равно впечатляет. До этих вычислений несоответствие между теорией и экспериментом составляло примерно 120 порядков величины, что, несомненно, указывало на громадный провал в наших знаниях. Однако подход Вайнберга и его соавторов продемонстрировал, что оказаться во вселенной с космологической постоянной, значение которой сопоставимо с измеряемым нами, не более удивительно, грубо говоря, чем натолкнуться на ши-тцу в районе, где преобладают лабрадоры. Иными словами, совсем не удивительно. Мы можем утверждать, что в рамках мультивселенного подхода то значение космологической постоянной, что мы наблюдаем, никак нельзя рассматривать как свидетельство нашего глубокого непонимания, а это громадный шаг вперёд.
Однако более детальный анализ выявил интересные тонкости, которые некоторые склонны рассматривать как слабое место этого результата. Ради простоты Вайнберг и его соавторы полагали, что в мультивселенной только значение космологической постоянной варьируется от вселенной ко вселенной; другие физические параметры считались фиксированными. Макс Тегмарк и Мартин Риз заметили, что если рассмотреть вариации не только значений космологической постоянной, но и, скажем, вариации размера исходных квантовых флуктуаций от вселенной ко вселенной, то конечный ответ будет другим. Напомним, что такие флуктуации являются первичными зёрнышками, из которых возникнут галактики: крохотные квантовые колебания, растянутые инфляцией, приводят к случайному набору областей, плотность вещества в которых чуть выше или чуть ниже среднего значения. Области с высокой плотностью сильнее притягивают материю по соседству, поэтому растут ещё быстрее, превращаясь в конце концов в галактики. Тегмарк и Риз указали, что первичные зёрнышки вещества легче противостоят гравитационному отталкиванию, порождаемому космологической постоянной, подобно тому как большая куча листьев лучше противостоит напорам ветра. Таким образом, мультивселенная, в которой варьируются как размеры первичных зёрнышек, так и значения космологической постоянной, будет содержать вселенные, в которых большие значения космологической постоянной окажутся скомпенсированы большим размером первичных зёрнышек; такая комбинация будет совместима с образованием галактик и, следовательно, — с жизнью как таковой. В мультивселенной такого сорта типичный наблюдатель увидит увеличенное значение космологической постоянной, что в свою очередь приводит к уменьшению — скорее всего, резкому — доли наблюдателей, которые обнаружат, что их космологическая постоянная так же мала, как наша собственная.
Преданные сторонники мультивселенной ссылаются на результат, полученный Вайнбергом и его соавторами, как на большой успех антропного принципа. А противники парируют результатами, полученными Тегмарком и Ризом и принижающими весомость антропных доводов. На самом деле, споры пока преждевременны. Это всё в высшей степени предварительные и пробные вычисления, которые в лучшем случае дают повод задуматься над самим антропным принципом. При определённых ограничениях из них следует, что антропный подход позволяет уложиться в диапазон измеряемых значений космологической постоянной; но стоит немножко ослабить эти ограничения, и вычисления мгновенно приводят к существенному росту диапазона допустимых значений. Такая чувствительность означает, что для более подробных вычислений в теории с мультивселенной потребуется более точное понимание характеристик составляющих вселенных и того, как они варьируются, что должно в конце концов привести к замене произвольных допущений чёткими теоретическими указаниями. Всё это очень важно для того, чтобы теория мультивселенной позволяла сделать определённые предсказания.
Учёные упорно трудятся над достижением этой цели, однако им предстоит ещё много чего преодолеть.{84}
Предсказания в мультивселенной IV:
Что ещё нужно?
Какие ещё препятствия нам предстоит преодолеть, прежде чем мы сможем получить точные предсказания из данной теории мультивселенной? Начнём с трёх самых главных.
Во-первых, как мы наглядно видели в рассмотренном выше примере, анализируемая модель мультивселенной должна давать возможность определить те физические свойства, которые варьируются от одной вселенной к другой, и для этих свойств мы должны уметь вычислять их статистическое распределение. Существенным здесь является понимание космологического механизма, благодаря которому мультивселенная населяется вселенными (такому как образование дочерних вселенных в модели ландшафтной мультивселенной). Именно этот механизм определяет, насколько один тип вселенных превалирует над другим, и, следовательно, именно он задаёт статистическое распределение физических свойств. Если повезёт, то получаемые распределения во всей мультивселенной, либо среди тех вселенных, в которых возможна жизнь, будут достаточно скошены, так что мы сможем извлечь определённые предсказания.
Во-вторых, если мы действительно опираемся на антропный принцип, то следует учесть то основное предположение, что мы, человечество, являемся самым заурядным видом. Жизнь может оказаться редким явлением для мультивселенной; а разумная жизнь ещё более редким. Но согласно антропному принципу, среди всех разумных существ мы настолько типичны, что то, что мы наблюдаем, должно представлять собой средние значения среди всех возможных значений, наблюдаемых любыми другими разумными существами, населяющими мультивселенную. (Александр Виленкин назвал это принципом заурядности .) Если распределение физических свойств среди вселенных, где возможна жизнь, известно, такие средние можно вычислить. Однако, как правило, в этом вопросе нет ясности. Если впоследствии учёные покажут, что наши наблюдения попадают в диапазон вычисленных средних для некоторой частной мультивселенной, то уверенность в нашей типичности — а также в гипотезе мультивселенной — заметно укрепится. Эго было бы здорово! Но если наши наблюдения не попадут в диапазон средних значений, тогда это может свидетельствовать об ошибочности гипотезы мультивселенной или же может означать, что человечество не заурядный вид, а какой-то особенный. Даже на территории, на 99 процентов населённой лабрадорами, всё равно можно натолкнуться на какого-нибудь добермана, нетипичную собаку для этого места. В этой ситуации будет совсем непросто определить, является ли гипотеза мультивселенной ошибочной, или же она верна, но наша Вселенная почему-то оказалась совсем нетипичной.{85}
Прогресс в этом направлении потребует, по всей видимости, более глубокого понимания механизма возникновения жизни в данной мультивселенной; подобные знания могли бы по крайней мере прояснить, насколько типичной была до сих пор наша эволюция. Это, конечно, очень важная задача. На данный момент, в большинстве антропных рассуждений этот вопрос полностью игнорируется под прикрытием идеи Вайнберга, что число разумных форм жизни в данной вселенной пропорционально числу содержащихся в ней галактик. Насколько мы понимаем, для разумной формы жизни необходима тёплая планета, для чего требуется звезда, входящая в какую-нибудь галактику, поэтому есть основания считать идею Вайнберга вполне убедительной. Но поскольку наши знания весьма рудиментарны, даже в вопросе собственной эволюции, это предположение не более чем гипотеза. Чтобы вычисления стали более точными, необходимо лучше понимать происхождение и развитие разумных форм жизни.
Мы подошли к третьему препятствию. На первый взгляд, его просто объяснить, но оно гораздо сложнее, чем кажется. Речь идёт о разделении бесконечности.
Разделение бесконечности
Чтобы сформулировать проблему, вернёмся к примеру с нашими собаками. Допустим, вы живёте в районе, в котором 3 лабрадора и одна такса. Закрывая глаза на усложнения типа частоты выгула собак, заключаем, что вероятность встретить лабрадора в 3 раза выше. Тот же вывод справедлив, если вокруг 300 лабрадоров и 100 такс; 3000 лабрадоров и 1000 такс; 3 миллиона лабрадоров и 1 миллион такс и так далее. Но что, если оба этих числа бесконечно большие? Как сравнить бесконечное число такс с троекратно бесконечным числом лабрадоров? Звучит как детский вопрос, ставящий в тупик родителей. Но это на самом деле серьёзный вопрос. Правда ли, что троекратная бесконечность больше обычной бесконечности? Если да, она больше именно в 3 раза?
Как известно, сравнение бесконечно больших чисел является исключительно хитроумной задачей. Для собак на Земле такой проблемы, конечно же, не возникает, потому что их численность конечна. Но для вселенных, входящих в какую-то определённую мультивселенную, эта проблема стоит весьма реально. Возьмём, например, инфляционную мультивселенную. Рассматривая весь кусок швейцарского сыра с точки зрения воображаемого внешнего наблюдателя, можно увидеть, что кусок продолжает увеличиваться и безостановочно порождает новые вселенные. Именно это подразумевается под термином «вечная» в «вечной инфляция». Кроме того, мы видели, что с точки зрения внутреннего наблюдателя каждая отдельная дочерняя вселенная тоже имеет бесконечное число разделённых между собой областей, что приводит к лоскутной вселенной. Пытаясь сделать те или иные предсказания, мы с неизбежностью сталкиваемся с бесконечностью вселенных.
Для понимания математической стороны вопроса представьте, что вы выиграли в телевизионной викторине и вам достался необычный приз: бесконечный набор конвертов, в первом из которых лежит 1 доллар, во втором 2 доллара, в третьем 3 доллара и так далее. Как обычно, под аплодисменты зала ведущий предлагает вам сделать выбор. Либо вы берёте ваш приз, как он есть, либо содержание каждого конверта можно удвоить. На первый взгляд вам очевидно, что второй вариант гораздо выигрышней. «В каждом конверте будет в 2 раза больше денег, чем раньше» — думаете вы, — «поэтому будет правильным выбрать именно второй вариант». Действительно, если число конвертов конечно, то такое решение было бы правильным. Обменять 5 конвертов с 1, 2, 3, 4 и 5 долларами на конверты с 2, 4, 6, 8 и 10 долларами будет более чем разумно. Однако, немного подумав, вы начнёте сомневаться, потому что поймёте, что в бесконечном случае всё не так очевидно. «Если выбрать второй вариант», — думаете вы, — «у меня останутся конверты с 2, 4, 6 и так далее долларами, то есть со всеми чётными числами. Но сейчас в конвертах находятся доллары, пробегающие весь ряд целых чисел, как чётных, так и нечётных. Поэтому если выбрать второй вариант, то из полной суммы денег будут отобраны все конверты с нечётным количеством долларов. Как-то непохоже, что это будет правильным решением». Вы начинаете лихорадочно соображать. Если сравнивать поконвертно, то второй вариант весьма привлекателен. А если сравнивать наборы конвертов, то не очень.
Дилемма, с которой вы столкнулись, иллюстрирует тип математических ловушек, которые так затрудняют сравнение бесконечных наборов. Зрители в зале начинают нервничать, вам пора уже сделать выбор, а ваша оценка того или иного выбора зависит от того, как вы сравниваете два результата.
Аналогичная неоднозначность возникает и при сравнении самих основ таких наборов: числа элементов в каждом из них. Пример с телевизионной викториной также хорошо иллюстрирует эту сторону вопроса. Чего больше: всех чётных чисел или всех целых чисел? Большинство людей ответят, что больше целых чисел, потому что чётные числа составляют лишь половину от общего количества. Однако опыт викторины позволяет более аккуратно подойти к этому вопросу. Представьте, что вы выбираете второй вариант — получить все чётные суммы долларов. В этом случае вам не придётся откладывать в сторону часть конвертов или требовать новые, так как ведущий просто удвоит сумму денег в каждом из них. Таким образом, заключаете вы, число конвертов, необходимых для размещения всех нечётных и всех целых сумм долларов является тем же самым, и, следовательно, заполнение каждой категории чисел равно между собой (табл. 7.1). И это странно. Сравнивая одним методом — рассматривая чётные числа как подмножество всех целых чисел, — вы делаете вывод, что целых чисел больше. Применяя другой метод — подсчитывая, сколько надо конвертов для размещения каждого вида чисел, — вы делаете вывод, что множество целых чисел и множество чётных чисел имеют одинаковое заполнение.
Таблица 7.1. Каждое целое число спарено с чётным числом, и наоборот, откуда возникает предположение, что их количества совпадают
Таблица 7.2. Каждое целое число спарено с дважды чётным числом, в результате чего остаётся бесконечный набор чётных чисел без пары. Отсюда возникает предположение, что чётных чисел больше, чем целых
Можно даже убедить себя, что чётных чисел больше чем целых. Представьте, что в качестве альтернативного варианта на викторине предлагается учетверить деньги в каждом конверте так, что в первом окажется 4, во втором 8, в третьем 12 долларов и так далее. Так как число конвертов опять не изменилось, возникает предположение, что количество целых чисел из первого варианта равно количеству чисел кратных 4 из второго варианта (табл. 7.2). Однако такое составление пар, когда каждое целое число сопоставляется числу кратному 4, даёт бесконечный набор чётных чисел, оставшихся без пары — 2, 6, 10 и так далее, — что наводит на мысль, что чётных чисел больше чем целых.
С одной стороны, количество чётных чисел меньше чем целых. С другой стороны, эти количества равны друг другу. С третьей стороны, чётных чисел больше чем целых. И выходит, что нет какого-то одного правильного вывода. Абсолютного ответа на вопрос, какой из этих бесконечных наборов больше, попросту не существует. Получаемый вами результат зависит от способа сравнения.{86}
Здесь возникает головоломка для теорий с мультивселенными. Как определить, что тот или иной тип вселенных имеет больше галактик и более расположен к возникновению жизни, если число рассматриваемых вселенных бесконечно? Мы столкнёмся с точно такими же двусмысленностями, как были описаны выше, если физические соображения не продиктуют, что взять за основу при определении способа сравнения . Теоретики сформулировали несколько способов сравнения, аналогичных составлению пар в приведённых выше таблицах, которые возникают в той или иной физической модели, — однако определённой процедуры, с которой согласны все, пока не разработано. Разные подходы приводят к разным результатам, подобно примерам с бесконечными наборами чисел. Согласно одному способу сравнения, преимущество имеют вселенные с одним набором свойств; согласно другому способу — другие.
Такой произвол сильно влияет на определение типичных или средних свойств в данной мультивселенной. Физики называют это проблемой измерения . Смысл этого математического термина вполне отражён в его названии. Необходимо иметь способ измерения размеров различных бесконечных наборов вселенных. Именно эта информация необходима для того, чтобы делать предсказания. Именно эта информация необходима, чтобы разобраться, насколько вероятнее, что мы находимся во вселенной одного типа, а не другого. Пока не будет найден фундаментальный принцип для сравнения бесконечных наборов вселенных, мы не сможем математически предсказывать результаты наблюдений и экспериментов, проводимых типичными обитателями мультивселенной, то есть нами. Поэтому нам не удастся избежать решения проблемы измерения.
Что ещё волнует скептиков
Я посвятил проблеме измерений отдельный раздел, не только потому что она является огромным препятствием на пути получения предсказаний, но также потому, что из неё вытекают другие проблемные следствия. В главе 3 было объяснено, почему инфляционная теория стала de facto космологической парадигмой. Крайне высокий темп расширения в течение первых мгновений жизни нашей Вселенной привёл к тому, что области, удалённые друг от друга в настоящем, могли быть связаны друг с другом в прошлом, что объясняет общую температуру, обнаруженную в современных экспериментах; быстрое расширение сглаживает также любую пространственную кривизну, что придаёт пространству плоскую форму, которая согласуется с наблюдениями; наконец, такое расширение превращает квантовые флуктуации в мельчайшие температурные колебания по всему пространству, которые наблюдаются в реликтовом излучении и которые важны для образования галактик. Эти достижения неоспоримы.{87} Однако если инфляция продолжается вечно, это может свести успехи на нет.
Когда в игру вступают квантовые процессы, лучшее, что можно сделать, — это предсказать вероятность одного результата относительно другого. Физики-экспериментаторы, понимая всю важность этого, вновь и вновь проводят эксперименты, набирая целую гору данных для статистической обработки. Когда квантовая механика предсказывает, что один результат в 10 раз вероятнее другого, полученные данные должны очень точно отражать это соотношение. Вычисления реликтового излучения, соответствие которого наблюдательным данным является наиболее убедительным аргументом в пользу инфляционной теории, основываются на квантовых флуктуациях, и поэтому тоже имеют вероятностный характер. Однако в отличие от лабораторных экспериментов эти вычисления нельзя проверить, запуская Большой взрыв снова и снова. Тогда как их интерпретировать?
Если в результате теоретического анализа получается, что, скажем, с вероятностью 99 процентов данные по реликтовому излучению имеют один вид, а не другой, и если более вероятный результат согласуется с нашими наблюдениями, то такие данные рассматриваются как серьёзный аргумент в пользу теории. Логика в том, что если некоторый набор вселенных возник на основе одних и тех же физических законов, то теория утверждает, что примерно 99 процентов таких вселенных будут похожи на то, что мы наблюдаем, а 1 процент будет иметь значительные отклонения.
Теперь если бы в инфляционной мультивселенной имелся конечный набор вселенных, то можно было бы прямо утверждать, что число нетипичных вселенных, в которых квантовые процессы привели бы к данным, не соответствующим ожидаемым, останется относительно малым. Однако, когда набор вселенных бесконечен, как в инфляционной мультивселенной, интерпретация чисел становится значительно более трудной задачей. Что такое 99 процентов от бесконечности? Бесконечность. А что такое 1 процент от бесконечности? Тоже бесконечность. Какая из них больше? От нас требуется сравнить два бесконечных набора. А как мы видели, даже когда кажется, что один набор больше другого, ответ зависит от используемого нами метода сравнения.
Тогда скептик делает вывод, что при вечной инфляции становятся условными сами предсказания, на которых зиждется наша уверенность в теории . Любой возможный результат, допустимый квантовыми вычислениями, каким бы маловероятным он ни был — 0,1 процента квантовой вероятности, 0,0001 процента квантовой вероятности или 0,0000000001 процента квантовой вероятности, — будет реализован в бесконечном числе вселенных просто потому, что любое из этих чисел, умноженное на бесконечность, равно бесконечности. Без фундаментального предписания того, как сравнивать бесконечные наборы, мы скорее всего не сможем сказать, что один набор вселенных больше другого, а потому он является наиболее вероятным типом наблюдаемых вселенных — мы теряем способность делать определённые предсказания.
Оптимист делает вывод, что замечательное согласие квантовых вычислений в инфляционной космологии с имеющимися данными (рис. 3.5) должно отражать какую-то глубокую истину. При конечном наборе вселенных и наблюдателей глубокая истина состоит в том, что вселенные, в которых данные отклоняются от квантовых предсказаний — те, которые составляют 0,1 процента квантовой вероятности, или 0,0001 процента квантовой вероятности, или 0,0000000001 процент квантовой вероятности, — встречаются действительно редко, и именно поэтому типичные обитатели мультивселенной, как мы с вами, не попадают ни в одну из них. При бесконечном наборе вселенных, заключает оптимист, глубокая истина должна быть в том, что аномальные вселенные встречаются опять-таки редко, однако нам ещё предстоит выяснить, как это происходит. Ожидается, что однажды мы найдём меру, определённый способ, который позволит сравнивать различные бесконечные наборы вселенных, и при этом доля вселенных, возникающих благодаря редким квантовым отклонениям, будет мала по сравнению с теми, квантовая вероятность которых более велика. Достижение этой цели остаётся колоссально трудной задачей, но большинство исследователей в этой области убеждены, что согласие теоретических выводов и полученных данных, представленное на рис. 3.5, означает, что когда-нибудь мы добьёмся успеха.{88}
Нерешённые вопросы и мультивселенные: