Глава 4. Объединяя законы природы
На пути к теории струн
Современная космология, от Большого взрыва до инфляции, ведёт своё начало из одного научного ядра: общей теории относительности Эйнштейна. В новой теории гравитации Эйнштейн отбросил общепринятое представление о жёстком и неизменном пространстве и времени; перед наукой предстал динамичный космос. Открытия такого масштаба крайне редки. Но Эйнштейн мечтал о покорении ещё более высоких вершин. С накопленным к 1920-м годам математическим арсеналом и геометрической интуицией он приступил к развитию единой теории поля .
Под единой теорией поля Эйнштейн подразумевал некую схему, которая позволит вплести все силы природы в единый и самосогласованный математический ковёр. Вместо одного набора законов для одних физических явлений и другого набора для других, Эйнштейн хотел свести все известные законы под единый свод. Но десятилетия напряжённой работы Эйнштейна в направлении объединения не оказали в то время значительного влияния — цель была великой, но для неё не пришло ещё время. Позднее другие исследователи подхватили знамя единой теории, широко шагая вперёд. Наиболее успешная схема объединения получила название теория струн .
В моих предыдущих книгах «Элегантная Вселенная» и «Ткань космоса» рассказывалось об истории возникновения теории струн и её основных свойствах. За годы, прошедшие с момента появления этих книг, состояние и общий статус теории привлекли внимание широкой общественности, что совершенно естественно. Несмотря на все успехи теории струн, от неё ждут определённых предсказаний, экспериментальная оценка которых даст ответ на вопрос о правильности или неправильности теории. Так как три новых типа мультивселенных (которые мы обсудим в главах 5 и 6) возникают в теории струн, сейчас важно обсудить текущий статус теории и возможности для её экспериментальной проверки и согласования с наблюдательными данными. Это и будет содержанием текущей главы.
Краткая история объединения
Когда Эйнштейн размышлял об объединении, науке были известны две силы: гравитация, описываемая его собственными уравнениями, и электромагнетизм, описываемый уравнениями Максвелла. Эйнштейн предполагал объединить две теории в единую математическую конструкцию, которая сочленила бы действие всех сил в природе. Эйнштейн был преисполнен надежд о своей единой теории. Работы Максвелла по объединению в XIX столетии совершенно справедливо рассматривались им как образцовый вклад в копилку человеческой мысли. До Максвелла электричество, текущее по проводам, притяжение, вызываемое детским магнитиком, и свет, идущий от Солнца к Земле, считались тремя разными, никак не связанными друг с другом явлениями. Максвелл осознал, что на самом деле они составляют сплетённое воедино научное триединство. Электрические токи порождают магнитные поля ; магниты, перемещающиеся рядом с проводами, порождают в них электрические токи ; а волнообразные возмущения, бегущие сквозь электрические и магнитные поля, порождают свет. Эйнштейн ожидал, что его собственная работа приведёт к продвижению программы объединения Максвелла и станет следующим и, возможно, финальным шагом на пути к единому описанию законов природы — такому описанию, в котором будут объединены электромагнетизм и гравитация.
Цель была весьма амбициозна, и Эйнштейн отнёсся к ней очень серьёзно. У него была уникальная способность полностью отдаваться задаче, которую он перед собой поставил, и последние тридцать лет своей жизни он полностью посвятил проблеме объединения. Его личный секретарь Хелен Дукас была рядом с ним в принстонском госпитале в предпоследний день его жизни, 17 апреля 1955 года. Она вспоминает, как прикованный к постели Эйнштейн почувствовал себя лучше и сразу же попросил принести черновики с уравнениями, в которых он писал и писал математические символы в безуспешной надежде, что единая теория поля выкристаллизуется. Настало утро, но Эйнштейн не проснулся. Его последние вычисления не пролили больше света на вопрос объединения.{33}
Немногие современники Эйнштейна разделяли его страсть к поискам объединения. С середины 1920-х до середины 1960-х годов физики, руководствуясь квантовой механикой, делали успехи в раскрытии тайны атома и использовании его скрытой мощи. Возник мощный очевидный соблазн подсмотреть, из чего устроена материя. И хотя многие соглашались, что единая теория была достойной целью, но в эру, когда теоретики и экспериментаторы рука об руку работали над открытием законов микромира, интерес к ней ослабевал. С уходом Эйнштейна работа над единой теорией практически прекратилась.
Вся глубина его неудачи была осознана, когда в последующих исследованиях выяснилось, что объединение осуществлялось в слишком узких рамках. Эйнштейн не только принижал роль квантовой физики (он полагал, что единая теория вытеснит квантовую механику, и поэтому нет никакой надобности закладывать её в основы теории), но в его работе не учитывались два дополнительных взаимодействия, обнаруженные экспериментально: сильное ядерное взаимодействие и слабое ядерное взаимодействие. Первое из них является тем сильным клеем, который не позволяет распасться атомному ядру, а второе, помимо прочего, ответственно за радиоактивный распад. Единая теория должна объединять не две силы, а четыре; мечта Эйнштейна стала ещё более призрачной.
В конце 1960-х и в начале 1970-х годов пошла обратная волна. Физики осознали, что методы квантовой теории поля, успешно применённые в электромагнетизме, также хорошо описывают слабое и сильное ядерные взаимодействия. Таким образом, все три негравитационные силы описываются на одном математическом языке. Более того, при подробном исследовании этих квантовых теорий поля — в основном в работах Шелдона Глэшоу, Стивена Вайнберга и Абдуса Салама, отмеченных Нобелевской премией, а также в последующих работах Глэшоу и его гарвардского коллеги Говарда Джорджи — обнаружились взаимосвязи, указывающие на возможное единство электромагнитных, слабых и сильных взаимодействий. Руководствуясь идеей Эйнштейна почти полувековой давности, эти теоретики доказали, что три на первый взгляд различные силы могут на самом деле быть проявлением единой, монолитной силы природы.{34}
Всё это явилось впечатляющим продвижением к единой теории, однако на таком обнадёживающем фоне возникла досадная проблема. Когда учёные применили методы квантовой теории к четвёртой силе в природе — гравитации, оказалась, что математика просто не работает. Вычисления, вовлекающие квантовую механику и общерелятивистское описание гравитационного поля по Эйнштейну, привели к странным результатам, равносильным математической галиматье. Как бы успешно не работали общая теория относительности и квантовая механика на своих естественных масштабах, на больших и малых расстояниях, бессмысленный результат, полученный при попытке их объединения, означал глубокую трещину в понимании законов природы. Являясь изначально лишь эстетическим устремлением, объединение стало логической необходимостью.
В середине 1980-х годов произошёл следующей ключевой скачок. Новая теория, теория суперструн , завладела умами физиков по всему миру. Она смягчила разногласия между общей теорией относительности и квантовой механикой и дала надежду, что гравитация может быть встроена в объединённый квантово-механический каркас. Наступила эра суперструнного объединения. Исследования шли с огромной скоростью, и тысячи журнальных страниц быстро заполнились вычислениями, прояснившими разные аспекты нового подхода и создавшими фундамент для его последовательной формулировки. Была развита впечатляющая и изощрённая математическая структура, но многое в теории суперструн (для краткости, теории струн ) оставалось неясным.{35}
Позже, начиная с середины 1990-х годов, попытки теоретиков распутать эти загадки неожиданно привели теорию струн к сюжету с мультивселенными. Учёным давно было известно, что математические методы, применяемые при анализе теории струн, используют множество приближений, а потому их можно усовершенствовать. Когда была сделана часть уточнений, учёные осознали, что соответствующий математический аппарат ясно указывает, что наша Вселенная является, возможно, частью некоторой мультивселенной. На самом деле, из математики теории струн следует не одна мультивселенная, а несколько различных типов мультивселенных, частью которых мы можем быть.
Для полного осознания этих захватывающих и дискуссионных идей и для понимания их роли в неослабевающем поиске законов космоса, следует отступить на шаг назад и оценить для начала статус теории струн.
Ещё раз о квантовых полях
Давайте начнём с более внимательного рассмотрения традиционной квантовой тории поля, оказавшейся столь успешной. Это послужит подготовкой к обсуждению струнного объединения, а также поможет выявить ключевые взаимосвязи между этими двумя подходами к формулировке законов природы.
В главе 3 обсуждалось, что классическая физика описывает поле как нечто типа тумана, который пронизывает область пространства и может переносить возмущения в виде ряби и колебаний. Если бы Максвелл описывал свет, например, освещающий в данный момент этот текст, он бы с восторгом рассказывал об электромагнитных волнах, которые исходят от солнца или от настольной лампы и колеблются в пространстве, направляясь к этой странице. Он стал бы математически описывать движение волн с помощью чисел, изображающих силу поля и направление поля в каждой точке пространства. Колеблющееся поле соответствует колеблющимся числам: численное значение поля в каждой заданной точке периодически увеличивается и уменьшается.
Вовлечение в квантовую механику понятия поля приводит к квантовой теории поля, обладающей двумя существенно новыми свойствами. Мы встречались с ними ранее, но стоит напомнить. Во-первых, квантовая неопределённость заставляет значение поля в каждой точке случайно колебаться — вспомните флуктуирующее поле инфлатона в инфляционной космологии. Во-вторых, подобно воде, состоящей из молекул H2O, квантово-механическое поле состоит из бесконечно малых частиц, известных как кванты поля. Кванты электромагнитного поля — это фотоны, и поэтому квантовая физика изменяет классическое описание вашей настольной лампы, данное Максвеллом, — теперь лампа излучает устойчивый поток из 100 миллиардов миллиардов фотонов в секунду.
Десятилетия дальнейших исследований установили, что эти свойства квантовой механики, применённые к полям, являются совершенно общими. Каждое поле подвержено квантовым флуктуациям. Каждое поле сопоставляется какому-то виду частиц. Электроны — это кванты электронного поля. Кварки — это кванты кваркового поля. В качестве (очень) приближённого наглядного образа физики иногда думают о частицах как об узлах или плотных крупицах соответствующего поля. Но как бы вы не представляли частицы, в рамках квантовой теории поля они математически описываются как крохотные крапинки или точки, не имеющие пространственного размера и внутренней структуры.{36}
Наша вера в квантовую теорию поля обусловлена одним существенным фактом: ни один эксперимент не противоречит её предсказаниям. Наоборот, данные подтверждают, что уравнения квантовой теории поля описывают поведение частиц с изумительной точностью. Наиболее впечатляющим примером является квантовая теория поля электромагнитных сил, квантовая электродинамика . С её помощью физики провели подробные вычисления магнитных свойств электрона. Работа достаточно трудоёмкая, и точные результаты потребовали десятилетий вычислений. Но это того стоило. Полученные результаты совпадают с реальными измерениями с точностью до десяти знаков после запятой, что является совершенно невообразимым согласием теории и эксперимента.
После такого успеха можно ожидать, что квантовая теория поля является математическим фундаментом для понимания всех сил в природе. Многие известные физики разделяли такую точку зрения. В результате упорного труда многих из них к концу 1970-х было установлено, что слабое и сильное ядерные взаимодействия действительно прекрасно описываются квантовой теорией поля. Оба взаимодействия аккуратно описаны в терминах полей — сильные и слабые поля, — распространяющихся и взаимодействующих согласно математическим правилам квантовой теории поля.
Однако, как указывалось выше в историческом обзоре, многие из упомянутых физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше. Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать. Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнуться друг от друга, притом что они электромагнитно притягиваются и гравитационно отталкиваются, — как правило, приводит к ответу бесконечность . И хотя некоторые вещи во Вселенной и могут быть бесконечными, например протяжённость пространства и количество заполняющего его вещества, но вероятности бесконечными быть не могут. По определению, значение вероятности должно находиться между 0 и 1 (между 0 и 100, если считать в процентах). Бесконечная вероятность совсем не означает, что нечто скорее всего произойдёт, или определённо случится; скорее наоборот — это бессмыслица, как говорить об одиннадцатом яйце в десятке. Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно.
Физики выяснили, что проблема коренится в дрожании и флуктуациях из-за квантовой неопределённости. Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Возникли разные математические противоречия, такие как бесконечные вероятности.
Чтобы понять, почему так происходит, представьте, что вы владелец старого дома в Сан-Франциско. Если кто-то из ваших жильцов устраивает слишком бурные вечеринки, вам, наверное, придётся поднапрячься, чтобы привести жильцов в чувство, но вы точно можете не беспокоиться, что пирушка нарушит устойчивость самого здания. Однако, если начнётся землетрясение, вы столкнётесь с более серьёзной проблемой. Флуктуации трёх негравитационных полей — полей, что населяют здание пространства-времени, — подобны неутомимым участникам вечеринок. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать.{37}
В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым, так что для его описания необходимо привлекать как квантовую механику, так и общую теорию относительности. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать в самый критический момент анализа, оставляя без ответа вопросы, касающиеся того, как Вселенная родилась и как она, возможно, умрёт в центре чёрной дыры.
Более того — и это действительно впечатляюще, — отвлекаясь от озвученных примеров чёрных дыр и Большого взрыва, можно вычислить, насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка , сжатая до фантастически малого объёма примерно 10−99 кубического сантиметра (грубо говоря, это сфера с радиусом 10−33 сантиметра с так называемой планковской длиной , как показано на рис. 4.1).{38} Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё. В целях объединения гравитации и квантовой механики потребуется совершить множество переходов, сталкиваясь с известным и неизвестным на всей этой гигантской территории, которая по большей части остаётся экспериментально недоступной. Такая задача весьма амбициозна и многие учёные были убеждены, что она нерешаема.
Рис. 4.1. Планковская длина, на которой сходятся гравитация и квантовая механика, примерно в 100 миллиардов миллиардов раз меньше, чем любая область, когда-либо исследованная экспериментально. На схеме каждое большое деление соответствует уменьшению размера в 1000 раз; благодаря этому данная схема целиком умещается на одной странице, что, однако, визуально снижает масштабность этого огромного диапазона. Для лучшего понимания укажем, что если увеличить атом до размеров наблюдаемой Вселенной, то планковская длина будет равна размерам обычного дерева
Поэтому вы можете представить то удивление и недоверие, когда в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн.
Теория струн
Хотя теория струн имеет репутацию сложной теории, её основная идея очень проста. Мы видели, что стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля. С каждым типом частиц связан свой тип поля. Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого в теории струн предлагается рассматривать их как крошечные, струноподобные вибрирующие нити, как на рис. 4.2. Приглядитесь поближе к любой частице, которая раньше считалась элементарной, и вы увидите, как того требует теория, крохотную вибрирующую струнку. Загляните поглубже в электрон и вы обнаружите струну, загляните поглубже в кварк и вы опять обнаружите струну.
Рис. 4.2. Согласно струнному объяснению устройства природы, на планковских расстояниях фундаментальные составляющие материи имеют вид струноподобных нитей. Однако из-за ограниченности разрешающей способности нашего оборудования мы видим эти струны как точки
При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы — лейтмотив всей теории струн, — но вибрируют они по-разному. Электрон менее массивен чем кварк, и согласно теории струн это означает, что струна электрона вибрирует менее энергично, чем струна кварка (очередное проявление эквивалентности энергии и массы, воплощённое в уравнении E = mc 2). Электрон также обладает электрическим зарядом, величина которого превышает величину заряда кварка, и эта разница объясняется другими, более тонкими, различиями в струнном вибрационном поведении каждого из них. Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот.
На самой деле, теория побуждает нас думать, что вибрирующие струны не просто порождают свойства частицы-хозяина, а что они и есть сама частица . По причине бесконечно малого размера струны, порядка планковской длины — 10−33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны. Большой адронный коллайдер, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10−19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц, подобно тому как Земля выглядит как точка, если на неё смотреть с Плутона. Тем не менее, согласно теории струн, частицы являются струнами.
В этом, в двух словах, и заключается теория струн.