Может ли физическая реальность быть математической?
Реальность, лишенная времени
Ответить на эти вопросы нам поможет Эйнштейн. Он учил, что существует два эквивалентных способа думать о физической реальности: как о трехмерном вместилище пространстве , где все изменяется во времени, и как о четырехмерном вместилище, называемом пространство-время , которое просто существует – неизменное, никогда не создаваемое и никогда не уничтожаемое[70]. Эти два взгляда соответствуют «лягушачьей» и «птичьей» точкам зрения на реальность (гл. 9 ). Вторая соответствует взгляду физика, изучающего математическую структуру реальности, подобно тому, как птица рассматривает землю с большой высоты. А первая – это внутренний взгляд наблюдателя, живущего внутри этой структуры, подобно лягушке, живущей на участке, который охватывает взглядом птица.
Математически пространство-время – это пространство с четырьмя измерениями: первые три являются знакомыми нам измерениями пространства, а четвертое измерение представляет собой время. На рис. 11.1 временное измерение я отложил по вертикали, а пространственные измерения по горизонтальным направлениям. Во избежание недоразумений я нарисовал только два из трех пространственных измерений, x и y , поскольку при попытке визуализировать четырехмерные объекты у меня из ушей начинает идти дым… На рисунке показана Луна, движущаяся вокруг Земли по круговой орбите, – ради удобства я изобразил орбиту гораздо меньше, чем она должна быть при соблюдении масштаба, и сделал еще некоторые упрощения[71]. В правой части рисунка показана «лягушачья» точка зрения: пять снимков пространства с Луной в разных положениях и неизменным положением Земли. В левой части рисунка показана «птичья» точка зрения: то, что лягушке кажется движением, заменено неизменной формой в пространстве-времени. Поскольку Земля не движется, она все время остается на одном месте в пространстве, а потому в пространстве-времени представлена вертикальным цилиндром. Луна выглядит гораздо интереснее и представляется в пространстве-времени спиралью, задающей, где находится небесное тело в разные моменты времени. Рассмотрите обе части рисунка, чтобы уяснить, как они связаны: это важно для нашего разговора. Чтобы получить мгновенный снимок пространства (справа) по пространству-времени (слева), вы делаете горизонтальный срез пространства-времени в тот момент, который вас интересует.
Рис. 11.1.Движение Луны вокруг Земли. Мы в равной мере можем думать о нем как о положении в пространстве, которое изменяется во времени (справа ), и как о неизменной спиральной форме в пространстве-времени (слева ), соответствующей математической структуре. Снимки пространства (справа ) – просто горизонтальные сечения пространства-времени (слева ).
Обратите внимание: не пространство-время существует внутри пространства и времени, а, напротив, пространство и время существуют внутри пространства-времени. Я утверждаю, что наша внешняя физическая реальность является математической структурой, то есть по определению абстрактной, неизменной сущностью вне пространства и времени. Как мы увидим, эта математическая структура соответствует «птичьей», а не «лягушачьей» точке зрения на нашу реальность, так что она должна содержать пространство-время, а не только пространство. Эта математическая структура содержит также дополнительные элементы, соответствующие материи в нашем пространстве-времени. Однако это не меняет ее вневременного характера: если бы история Вселенной была шахматной партией, математическая структура соответствовала бы не одной позиции, а всей игре (рис. 10.6 ). Если бы история Вселенной была кинофильмом, она соответствовала бы не отдельному кадру, а целому дивиди. Так что с «птичьей» точки зрения траектории объектов, движущихся в четырехмерном пространстве-времени, напоминают клубок спагетти. Там, где лягушка видит нечто, движущееся с постоянной скоростью, птица наблюдает прямую, еще не сваренную макаронину. Там, где лягушка видит Луну, обращающуюся вокруг Земли, птица видит спиральку-ротини (рис. 11.1 ). Там, где лягушка видит сотни миллиардов звезд, движущихся вокруг Галактики, птица видит сотни миллиардов переплетающихся макаронин. Для лягушки реальность описывается ньютоновскими законами движения и гравитации. Для птицы реальность – это геометрия макарон.
Прошлое, настоящее и будущее
«Извините, сколько сейчас времени?» – думаю, вы тоже задаете этот вопрос, как если бы на фундаментальном уровне существовала такая вещь, как сейчас . При этом вы, наверное, никогда не обращались к прохожему с вопросом: «Извините, сколько сейчас места?» Если вы действительно безнадежно заблудились, то, вероятно, спросите что-нибудь вроде: «Извините, а где я?» – подтверждая тем самым, что вы интересуетесь не свойством пространства, а, скорее, своим собственным свойством: положением в пространстве в момент, когда задан вопрос. А когда вы спрашиваете о времени, то в действительности интересуетесь не свойством времени, а, скорее, собственным положением во времени. Пространство-время содержит все места и все времена, поэтому нет никакого сейчас , как нет и здесь . Так что в научном (но не в бытовом) отношении корректнее спросить: «Когда я?» Пространство-время подобно карте космической истории без отметки «Вы находитесь здесь». Если вам для ориентировки нужна такая отметка, я рекомендую пользоваться телефоном с часами и GPS -приемником.
Когда Эйнштейн писал, что различие между прошлым, настоящим и будущим – не более чем иллюзия, хотя и весьма навязчивая, он имел в виду, что эти понятия не имеют объективного смысла в пространстве-времени. На рис. 11.2 показано, что когда мы упоминаем о настоящем , то подразумеваем временное сечение пространства-времени, соответствующее моменту, когда мы об этом подумали. Мы называем будущим и прошлым части пространства-времени, расположенные выше и ниже этого сечения. Это аналогично тому, как вы пользуетесь словами «здесь», «передо мной» и «позади меня», чтобы указывать на разные части пространства относительно своего текущего положения. Часть, находящаяся перед вами, очевидно, не менее реальна, чем часть позади вас: в самом деле, если вы идете вперед, часть того, что сейчас находится перед вами, в будущем окажется позади вас, а сейчас оно находится позади многих других людей. Аналогично в пространстве-времени будущее столь же реально, как и прошлое – части пространства-времени, которые сейчас находятся в вашем будущем, окажутся в вашем прошлом. Поскольку пространство-время статично и неизменно, никакая его часть не может изменить статус своей реалистичности, так что все его части должны быть одинаково реальными[72].
Рис. 11.2.Различие между прошлым, настоящим и будущим существует только с «лягушачьей» точки зрения (справа ), но не с «птичьей», с которой воспринимается математическая структура (слева ) – в последнем случае вы не можете спрашивать, который час, а только – в каком вы времени.
Итак, время – не иллюзия, однако течение времени иллюзорно. То же самое касается изменений. В пространстве-времени существует будущее, да и прошлое не исчезает. Когда мы объединяем эйнштейновское классическое пространство-время с квантовой механикой, мы получаем квантовые параллельные вселенные (гл. 8 ). Это означает, что существует много прошлых и будущих, и все они реальны, что не отменяет неизменную математическую природу полной физической реальности.
Так мне все это видится. Однако, хотя данное представление о неизменной реальности проверено временем и восходит к самому Эйнштейну, оно остается спорным и порождает оживленную научную дискуссию. Например, Брайан Грин в книге «Скрытая реальность» выражает тревогу из-за утраты фундаментального статуса таких понятий, как изменение и созидание: «Я предпочитаю думать, что существуют процессы, пусть даже гипотетические… которые, как нам представляется, приводят к возникновению этой мультивселенной»[73]. Ли Смолин в книге «Возвращение времени» идет еще дальше и показывает, что не только изменения реальны, но время вообще может быть единственной реальной вещью. На противоположном краю спектра стоит Джулиан Барбур, обосновывающий в книге «Конец времени» не только иллюзорность изменений, но и возможность описывать реальность вообще без введения понятия времени.
Могут ли быть математическими пространство-время и «материя»?
Итак, пространство-время может рассматриваться как математическая структура. Но что можно сказать о материи, находящейся в пространстве-времени, скажем о книге, которую вы сейчас читаете? Как все это может быть частью математической структуры?
В последние годы мы видели, что разнообразные вещи, которые казались совершено не связанными с математикой, например тексты, звуки, изображения, фильмы, представляются математически с помощью компьютеров и передаются по интернету в виде наборов чисел. Присмотримся поближе к тому, как компьютеры это делают: природа делает нечто очень похожее, чтобы представить все окружающее нас вещество.
Я только что набрал на клавиатуре английское слово word , и лэптоп представил его в памяти последовательностью из четырех чисел: 119 111 114 100. Каждую строчную букву он передает числом, равным 96 плюс порядковый номер буквы в алфавите (a = 97, w = 119 и т. д.). Одновременно мой компьютер играл композицию De Profundis Арво Пярта, которая тоже представляется последовательностью чисел. Эти числа интерпретируются не как буквы, а как положения, которые должны занимать мембраны аудиоколонок в каждое из 44 100 различных мгновений каждой секунды, что, в свою очередь, вызывает колебания воздуха, которые мои уши и мозг интерпретируют как звук. Когда я нажал клавишу w , лэптоп воспроизвел на дисплее изображение w , также представленное числами. Хотя изображения на дисплее кажутся гладкими и непрерывными, в действительности он состоит из 1920 × 1200 пикселов, расположенных в виде прямоугольной сетки (рис. 11.3 ), и цвет каждого пиксела представляется тремя числами в диапазоне от 0 до 255 каждое, задающими интенсивность идущего от пикселя красного, зеленого и голубого света. Подходящее сочетание этих трех цветов позволяет воспроизвести все интенсивности всех цветов радуги. Прошлым вечером, когда мы с сыновьями смотрели видео с Youtube , лэптоп делил на пикселы не только два пространственных измерения дисплея, но и временное измерение, разбивая его на 30 кадров в секунду.
Физики часто моделируют в трехмерии некоторые явления вроде урагана, вспышки сверхновой или образования планетной системы. Для этого мы делим трехмерное пространство на трехмерные пикселы (вокселы ). Мы также делим четырехмерное пространство-время на четырехмерные вокселы. Каждый четырехмерный воксел представляет, что происходит в соответствующем месте и времени с помощью группы чисел, кодирующих все, что имеет отношение к делу, скажем, температуру, давление, плотности и скорости различных веществ в вокселе. Например, при моделировании Солнечной системы воксел, соответствующий центру Солнца, будет содержать чрезвычайно большое число, выражающее температуру, а воксел за пределами Солнца, содержащий почти пустое пространство, будет иметь близкое к нулю число, выражающее давление. Числа в соседних вокселах удовлетворяют некоторым соотношениям, которые описываются математическими уравнениями, а когда компьютер выполняет моделирование, он, подобно игроку в судоку, пользуется этими соотношениями, чтобы определять отсутствующие числа. Если компьютер готовит прогноз погоды, то пространственно-временные вокселы, соответствующие настоящему моменту, заполняются измеренными значениями давления воздуха, температуры воздуха и т. д. Компьютер затем применяет соответствующие уравнения для вычисления значений, которые записываются в пространственно-временные вокселы, соответствующие завтрашнему дню и остальным дням недели.
Рис. 11.3.Компьютеры обычно представляют полутоновые изображения, храня число для каждой точки (пиксела) фотографии (самая правая картинка ). Чем больше число, тем выше интенсивность света от данного пиксела: 0 представляет черный цвет (нет никакого света), а 255 – белый цвет. Подобным же образом так называемые поля в классической физике представляются в каждой точке пространства-времени числом, которое, грубо говоря, задает количество «материи», присутствующей в каждой точке.
Подобные симуляции, математически отображающие некоторые аспекты внешней физической реальности, делают это приближенно. Пространство-время, конечно, не состоит из грубых вокселов, которые применяются для моделирования погоды, и это одна из причин, по которой метеорологические прогнозы часто неточны. И все же мысль, что с каждой точкой пространства-времени связана группа чисел, весьма глубока, и, я думаю, она кое-что говорит нам не только о нашем описании реальности, но и о самой реальности. Одно из фундаментальных понятий современной физики, поле , устроено именно так: это нечто, представимое числами в каждой точке пространства-времени. Например, существует поле температур , соответствующее воздуху вокруг нас: в каждой точке имеется строго определенная температура, не зависящая от любых изобретенных человеком вокселов, и ее значение можно измерить с помощью термометра (или пальца, если не требуется высокой точности). Существует также поле давления : в каждой точке есть число, выражающее давление – его можно измерить барометром или своими ушами, которые начинают болеть, если это число сильно отклоняется от нормы, а также воспринимают звук, если давление колеблется во времени.
Сейчас известно, что ни то, ни другое поле не является истинно фундаментальным: они, по сути, показывают, как быстро в среднем движутся молекулы воздуха, и их числа перестают быть четко определенными, если попытаться измерить их в субатомных масштабах. Однако существуют другие поля, которые кажутся фундаментальными, образующими часть ткани нашей внешней физической реальности. Магнитное поле определяется не одним (как температура), а тремя числами в каждой точке пространства-времени, задающими его величину и направление. Вы, вероятно, измеряли магнитное поле с помощью компаса, наблюдая, как его стрелка устанавливается вдоль магнитного поля Земли, направленного к северу. Стрелка выравнивается быстрее, если магнитное поле сильнее – например вблизи магнитно-резонансного томографа. Другой пример – электрическое поле , которое также представляется тремя числами, задающими его величину и направление. Простой способ измерить его – по силе, с которой оно действует на заряженный объект, например, когда ваши волосы электрически притягиваются к пластмассовой расческе. Электрическое и магнитное поля можно элегантно объединить в электромагнитное поле (представляется шестью числами в каждой точке пространства-времени). Свет – это волны, бегущие по электромагнитному полю (гл. 7 ), и если наш физический мир – это математическая структура, то весь свет во Вселенной (который кажется нам физическим) связан с шестью числами в каждой точке пространства-времени (чисто математической сущностью). Эти числа подчиняются математическим соотношениям – уравнениям Максвелла (рис. 10.4 ).
Следует сделать оговорку: то, что я сейчас описал, соответствует пониманию электричества, магнетизма и света в классической физике. Квантовая механика усложняет картину (но не делает ее менее математической), заменяя классический электромагнетизм квантовой теорией поля – основанием всей современной физики элементарных частиц. В квантовой теории поля волновая функция задает степень, в которой является реальной любая возможная конфигурация электрического и магнитного полей. Волновая функция сама по себе математический объект, абстрактная точка в гильбертовом пространстве.
Квантовая теория поля утверждает (гл. 7 ), что свет состоит из частиц, называемых фотонами. Грубо говоря, числа, составляющие электрическое и магнитное поля, могут рассматриваться как информирующие о числе фотонов в каждый момент в каждом месте. Так же, как есть электромагнитное поле, напряженность которого соответствует числу фотонов в каждый момент в каждом месте, существуют и другие поля, соответствующие прочим известным элементарным частицам. Например, напряженность электронного поля и напряженность кваркового поля связаны с числом электронов и кварков в каждый момент времени в каждом месте. В классической физике все движения всех частиц в пространстве-времени соответствуют набору чисел в каждой точке четырехмерного математического пространства – математической структуре. В квантовой теории поля волновая функция задает степень, в которой является реальной любая возможная конфигурация каждого из этих полей.
Физики еще не нашли математическую структуру, которая описывала бы все аспекты реальности, включая гравитацию (гл. 7 ). Но пока нет признаков того, чтобы теория струн или другой кандидат на роль такого описания был бы менее математическим, чем квантовая теория поля.
Описание или эквивалентность?
Прежде чем идти дальше, необходимо разобраться с важным семантическим моментом. Большинство моих коллег-физиков скажет, что внешняя физическая реальность (по крайней мере приближенно) описывается математикой. Я же утверждаю, что внешняя физическая реальность является математикой, точнее, математической структурой.
Все, о чем до сих пор шла речь в этой главе, предполагает, что нашу внешнюю физическую реальность можно описать математической структурой. Если в учебнике физики появится долгожданная «теория всего» (ТВ), ее уравнения будут полностью описывать математическую структуру, которая является внешней физической реальностью. Я использую здесь слово «является», а не «соответствует», поскольку, если две структуры эквивалентны, то (как подчеркивал израильский профессор Мариус Коэн[74]) не существует осмысленного контекста, в котором они не являются одним и тем же. Вспомните мощное математическое понятие эквивалентности из гл. 10, которое охватывает самую суть математических структур: если два полных описания эквивалентны, то они описывают одну и ту же вещь[75]. Это означает, что если некие математические уравнения описывают и нашу внешнюю физическую реальность, и математическую структуру, то наша внешняя физическая реальность и эта математическая структура есть одно и то же. И тогда верна гипотеза математической Вселенной: наша физическая реальность является математической структурой.
Вспомните, что две математические структуры эквивалентны, если можно попарно связать их сущности так, чтобы сохранялись все отношения. Если вы можете таким образом спарить каждую сущность нашей внешней физической реальности с соответствующей сущностью в математической структуре (например, «данное значение напряженности электрического поля в данной точке физического пространства соответствует данному числу в математический структуре»), то наша внешняя физическая реальность соответствует определению того, что значит быть математической структурой. Фактически она и есть эта математическая структура.
В гл. 10 мы видели, что если хочется избежать принятия гипотезы математической Вселенной, то можно отбросить гипотезу внешней реальности, утверждающую, что существует внешняя физическая реальность, полностью независимая от людей. Можно затем утверждать, что Вселенная почему-либо оказалась состоящей из материи, идеально описываемой математической структурой, но она имеет и другие свойства, которые этой структурой не описываются и вообще не могут быть описаны абстрактным, свободным от «багажа», независимым от человека способом. Однако, думаю, эта точка зрения заставила бы перевернуться в гробу Карла Поппера (гл. 6 ), который подчеркивал: научные теории должны иметь наблюдаемые проявления. В то же время, поскольку математическое описание по нашему допущению является идеальным, отвечающим за все, что может наблюдаться, все дополнительные украшения, которые могли бы сделать нашу Вселенную нематематической, по определению не имели бы наблюдательных проявлений и поэтому были бы совершенно ненаучны.
Кто вы?
Итак, мы видим, что пространство-время и находящаяся в нем материя могут рассматриваться как часть математической структуры. Но что можно сказать о нас ? Наши мысли, эмоции, самосознание и это глубокое экзистенциальное чувство я существую – ни одно из этих ощущений не является для меня ни в малейшей степени математическим. И все же мы сложены из элементарных частиц тех же типов, что и все остальное в нашем физическом мире, который является чисто математическим. Как все это увязать?
Я думаю, мы еще не вполне понимаем, что представляем собой. Более того, нам не требуется полностью раскрывать загадку сознания (гл. 9 ) для того, чтобы понять внешнюю физическую реальность. Тем не менее в современной физике есть соблазнительные возможности изучения самих себя.
«Коса» жизни
Георгий Гамов озаглавил автобиографию «Моя мировая линия». Этим выражением пользовался и Эйнштейн для обозначения пути по пространству-времени. Однако ваша собственная мировая линия, строго говоря, не является линией: она не прямая и имеет ненулевую толщину.
Рассмотрим сначала около 1029 элементарных частиц (кварков и электронов), из которых состоит ваше тело. Вместе они образуют в пространстве-времени трубкообразную фигуру, наподобие спиральной траектории Луны (рис. 11.1 ), но более сложную (ваши передвижения от рождения до смерти гораздо сложнее, чем у Луны). Так, если вы плаваете по дорожке в бассейне, часть вашей пространственно-временной трубки будет иметь зигзагообразную форму. А если вы носитесь по детской площадке, часть вашей пространственно-временной трубки будет напоминать серпантин.
Однако самое интересное свойство вашей пространственно-временной трубки – не многочисленные изгибы, а ее удивительно сложная внутренняя структура. В то время как частицы, составляющие Луну, скреплены более или менее жестко, многие из ваших частиц находятся в постоянном движении друг относительно друга.
Рассмотрим, например, частицы, которые составляют красные кровяные тельца (эритроциты). Каждый эритроцит прокладывает собственную уникальную трубку в пространстве-времени, соответствующую сложному маршруту по артериям, капиллярам и венам с регулярным возвращением к сердцу и легким. Пространственно-временные трубки эритроцитов переплетаются и образуют нечто, напоминающее косу, только гораздо более сложную, чем все виденное вами в парикмахерской. Обычная человеческая коса состоит из трех чередующихся прядей примерно по 30 тыс. волос каждая. А пространственно-временная «коса» сложена из триллионов «прядей» (по одной на эритроцит), переплетенных в никогда не повторяющемся орнаменте, и каждая «прядь» состоит из триллионов волосоподобных траекторий элементарных частиц. Иными словами, если представить, что вы потратите целый год, делая подруге по-настоящему сумасшедшую прическу и переплетая отдельные волоски, а не пряди, то паттерн все равно окажется гораздо проще.
И все же эта сложность блекнет в сравнении с паттернами обработки информации в мозге. Как говорится в гл. 8 и показано на рис. 8.7, у вас около 100 млрд нейронов, постоянно генерирующих электрические сигналы, которые приводят в движение миллиарды триллионов атомов (в основном ионов натрия, калия и кальция). Траектории этих атомов образуют в пространстве-времени чрезвычайно сложное переплетение, соответствующее запоминанию и обработке информации так, что возникает знакомое нам чувство самосознания. В научном сообществе есть широкое согласие относительно того, что мы еще не понимаем, как это работает. Поэтому следует признать, что мы не вполне понимаем, что собой представляем. В общих чертах можно сказать: вы – паттерн в пространстве-времени . Математический паттерн. Пространственно-временная «коса», одна из сложнейших.
Для некоторых людей эмоционально неприемлемо думать о себе как о коллекции частиц. Действительно, лет в двадцать я здорово поржал, когда мой друг Эмиль, пытаясь задеть моего друга Мэтса, обозвал его atomhög , по-шведски «атомная куча». Однако если кто-то скажет: «Не могу поверить, что я просто куча атомов!» – я обращу его внимание на использование слова «просто»: сложнейшая пространственно-временная «коса», которая соответствует сознанию, бесспорно, является самым красивым из сложных паттернов в нашей Вселенной. Пространственно-временной паттерн самого быстрого из компьютеров, или Большого Каньона, или даже Солнца, гораздо проще.
В то время как многие частицы внутри вас находятся в постоянном сложном движении, отвечающем за жизнедеятельность, движения других гораздо проще, в их числе, например, те, которые составляют кожу, не позволяющую остальным частицам разлететься. Это значит, что ваша пространственно-временная трубка чем-то похожа на электрические кабели, внутри которых жилы переплетены, а снаружи укрыты изоляцией в виде полой трубки. Более того, многие из ваших частиц регулярно заменяются. Например, около 3/4 веса вашего тела приходится на молекулы воды, которые заменяются примерно каждый месяц, а клетки кожи и эритроциты заменяются каждые несколько месяцев. В пространстве-времени траектории частиц, присоединяясь, а затем покидая ваше тело, создают паттерн, напоминающий волосатый початок кукурузы. На двух концах вашей пространственно-временной «косы», соответствующих рождению и смерти, нити постепенно разделяются, что соответствует частицам, которые сначала к вам присоединяются, взаимодействуют и в конце концов уходят своим собственным путем (рис. 11.4 , справа). Это делает пространственно-временную структуру жизни похожей на дерево. В нижней части, соотносимой с ранним периодом, находится сложная система корней, отвечающая пространственно-временным траекториям множества частиц. Те постепенно объединяются в толстые сплетения и в конце концов образуют единую трубкообразную магистраль, соответствующую вашему нынешнему телу (внутри которого описанная выше «коса»). На вершине, соотносимой с поздним периодом, магистраль разделяется на все более тонкие ветви, соответствующие вашим частицам, уходящим своими путями, когда ваша жизнь заканчивается. Иными словами, паттерн жизни имеет лишь конечную протяженность во временном измерении, и «коса» на обоих концах расплетается на «локоны».
Рис. 11.4.Сложность – отличительный признак жизни. Движению объекта соответствует паттерн в пространстве-времени. Неживой комок из десяти частиц, ускоряемый влево, порождает простой паттерн (слева ), тогда как частицы, составляющие живой организм, образуют сложный паттерн (посередине ), соответствующий сложному движению, реализующему обработку информации и другие жизненные процессы. Когда живой организм умирает, он в конце концов разлагается, и его частицы отделяются друг от друга (справа ). На этих иллюстрациях показано всего 10 частиц. Наш собственный пространственно-временной паттерн включает около 1029 частиц, и он умопомрачительно сложен.
Все обсуждавшиеся здесь паттерны существуют, конечно, в четырех измерениях, а не в трех, и метафоры с косами, кабелями и деревьями не должны восприниматься слишком буквально. Основная мысль проста: вы можете быть неизменным паттерном в пространстве-времени – детали не так важны для идей, которые мы обсуждаем. Этот паттерн является частью математической структуры, представляющей собой нашу Вселенную, а отношения между частями этого паттерна задаются математическими уравнениями. Эвереттовская квантовая механика наделяет (гл. 8 ) вас более интересной (но не в меньшей степени математической) структурой, поскольку вы как единое существо (ствол дерева) можете разделяться на множество ветвей, и каждая ощущает себя единым и неповторимым существом.
Проживая мгновение
Итак, пространство и материя в нем могут быть частью математической структуры. Даже мы сами можем быть ее частью. Но всему есть цена: мы пожертвовали привычным чувством течения времени, признав его иллюзией, и вместо этого считаем время четвертым измерением в неизменной математической структуре. Но как примирить это с нашим субъективным опытом, свидетельствующим о том, что вещи от мгновения к мгновению изменяются?
Ваше субъективное восприятие существует в пространстве-времени, как все сцены кинофильма собраны на дивиди. В частности, пространство-время содержит большое число косицеобразных паттернов, отвечающих субъективным восприятиям как в разных местах (соответствующих разным людям), так и в разное время. Будем называть каждое такое восприятие наблюдательным мгновением . В статье о математической Вселенной (1996) я предложил другое название, однако «наблюдательное мгновение» нравится мне больше, а Ник Бострем и другие философы в последние годы популяризовали его. Из собственного опыта вам известно, что некоторые наблюдательные мгновения ощущаются как связанные, образующие непрерывную последовательность, соответствующую тому, что вы называете своей жизнью. Однако это ощущение приводит к непростым вопросам. Как устроена эта связь? Существуют ли правила, определяющие, какие наблюдательные мгновения кажутся связанными, и почему связанные последовательности наблюдательных мгновений субъективно ощущаются как течение времени?
Очевидная догадка – эта связь имеет отношение к непрерывности: два наблюдательных мгновения ощущаются как связанные, если они соседствуют в пространстве и времени, а также являются частью одного паттерна. Однако рис. 11.5 демонстрирует, что этот вопрос сложнее, чем кажется. Во-первых, наблюдательное мгновение в , соответствующее моменту, когда я проснулся, ощущается связанным с наблюдательным мгновением б , которое соответствует моему засыпанию. А именно, мне кажется, что в является продолжением б , несмотря на то, что эти два наблюдательных мгновения вовсе не соседствуют в пространстве и времени. Во-вторых, имеется множество других наблюдательных мгновений (соответствующих восприятиям других людей, находящихся со мной на борту), которые гораздо ближе к в как в пространстве, так и во времени. Так почему бы в не ощущаться связанным с одним из их наблюдательных мгновений? В-третьих, представьте себе моего идеального клона, созданного, пока я спал. У него все частицы находятся в тех же конфигурациях, за исключением того, что он находится на борту другого такого же самолета. Тогда субъективное восприятие клона после пробуждения будет субъективно идентичным тому, что было у меня в точке в , то есть по определению оно будет ощущается связанным с б , несмотря на отсутствие связи паттернов в пространстве и времени[76].
Рис. 11.5.Моя мировая линия при полете в Лондон. Вскоре после взлета (а ) я уснул (б ) и проснулся (в ) незадолго до посадки (г ). Несмотря на то, что мое сознательное восприятие в точке в отстоит от того, что было в точке б как в пространстве, так и во времени, все равно кажется, что оно непрерывно связано с моим последним сознательным восприятием в точке б , а не с множеством других сознательных восприятий (принадлежащих моим попутчикам), которые гораздо ближе к в , чем к б , как в пространстве, так во времени.
Это наводит на мысль, что соображения непрерывности – ложный след и что попросту не существует никакого еще не открытого физического процесса, который вызывал бы ощущение связанности некоторых наблюдательных мгновений, объясняя тем самым знакомое нам ощущение течения времени. К счастью, существует более простое объяснение, не требующее никакой новой физики. Гипотеза математической Вселенной в сочетании с нашим субъективным опытом подразумевает, что в пространстве-времени существуют очень сложные косицеобразные структуры, обладающие самосознанием и субъективно воспринимающие наблюдательные мгновения. Мы знаем, что эти структуры могут быть хорошо локализованы как в пространстве, так и во времени: мозг занимает объем всего около литра, а время, требующееся ему для отдельной мысли или ощущения, составляет обычно около десятой доли секунды плюс-минус порядок величины. Это означает, что субъективное восприятие наблюдательного момента зависит только от того, что находится прямо здесь, в небольшой области пространства-времени, а не от чего-либо отдаленного в пространстве (такого, как внешняя реальность, которую вы видите вокруг) или во времени (вроде пережитого вами несколько секунд назад). Вместе с тем важнейшим элементом сознательного восприятия является следующее: прямо сейчас вы воспринимаете и тот факт, что перед вами эта книга, и фразу, которую прочли пять секунд назад, несмотря на то, что ни книга, ни фраза не принадлежат малой области пространства-времени, составляющей ваше настоящее наблюдательное мгновение. Иными словами, вам кажется, будто способ, каким вы ощущаете свои наблюдательные мгновения, задействует нечто, находящееся в отдалении и в пространстве, и во времени – хотя влияние ни того, ни другого не допускается. Как это возможно?
Обсудив пространственную часть этого парадокса (гл. 9 ), мы пришли вот к чему: сознание наблюдает не внешний мир, а, скорее, детализированную модель реальности в мозге. Эта модель непрерывно обновляется за счет данных, поступающих от органов чувств, следящих за внешним миром[77]. Так что пространственно-временной паттерн, отвечающий вашему текущему наблюдательному мгновению, включает мгновенное состояние вашей модели реальности. Как показано на рис. 11.6, аналогично дело обстоит и с временной частью: ваша модель мира включает не только информацию о текущем состоянии окружения, но и память о том, каким оно было. Каждый из восьми фрагментов фильма представляет собой наблюдательное мгновение. Для каждого есть четкий образ того, что происходит сейчас, и все более туманные воспоминания о том, что происходило в прошлом. Таким образом, всю последовательность событий во времени вы осознаете прямо сейчас. Модель пространственной реальности дает субъективное ощущение видения трехмерного пространства, хотя сознание имеет дело с моделью реальности в мозге. Модель временной реальности с последовательностью воспоминаний дает субъективное ощущение протекания последовательности событий во времени, несмотря на то, что сознание имеет дело лишь с моделью реальности в мозге в одно-единственное наблюдательное мгновение.
Рис. 11.6.Субъективное восприятие пространства-времени (наблюдательные мгновения) дайвера и лыжника в четыре отдельных момента времени. Каждый отрезок фильма соответствует одному наблюдательному мгновению и включает ясное изображение того, что происходит в данный момент, а также все более туманные воспоминания о том, что происходило в прошлом. Если я перемешаю случайным образом эти восемь отрезков, вы легко сможете восстановить последовательность, опираясь на связи между ними: текущее зрительное впечатление (правый кадр) в некоторые наблюдательные мгновения совпадает с воспоминаниями в другие мгновения.
Иными словами, субъективное ощущение того, что время течет, возникает из отношений между воспоминаниями, которые есть у вас прямо сейчас. Представьте мысленный эксперимент, в котором мой идеальный клон создан спящим вместе со всеми моими воспоминаниями, а затем разбужен ровно настолько, чтобы воспринять одно-единственное наблюдательное мгновение. Он все равно почувствовал бы, что время течет из сложн