Часть II. Все мельче и мельче
Глава 7. Космическое «лего»
Все, что мы называем реальным, состоит из вещей, которые не могут рассматриваться как реальные.
Нильс Бор
«Нет, это какая-то ерунда! Здесь где-то ошибка», – я один в комнате подруги в стокгольмском общежитии готовлюсь к первому экзамену по квантовой механике. В учебнике говорится: малые объекты, вроде атомов, могут находиться в нескольких местах одновременно, а крупные объекты, вроде людей, – не могут. «Как бы не так! – говорю я себе. – Люди состоят из атомов, и если те могут быть в нескольких местах сразу, то и мы, конечно, тоже!» Там также сказано, что всякий раз, когда некто наблюдает, где находится атом, тот случайным образом прыгает в одно из тех мест, где он ранее пребывал. Но я не нашел ни одного уравнения, описывающего, что именно полагается считать наблюдением. «Может ли робот считаться наблюдателем? А отдельный атом?» В книге говорилось лишь, что любая квантовая система изменяется детерминистическим образом согласно уравнению Шредингера. Но разве это логически совместимо с подобными случайными прыжками?
Я набрался смелости и постучался в дверь нашего крупнейшего эксперта, профессора физики из Нобелевского комитета. Двадцать минут спустя я вышел из кабинета в полном недоумении, убежденный, что я умудрился вообще ничего не понять. Так началось мое долгое и до сих пор не подошедшее к концу путешествие к квантовым параллельным вселенным. Лишь пару лет спустя, перебравшись для работы над диссертацией в Беркли, я понял, что это было вовсе не мое непонимание. Выяснилось, что многие знаменитые физики горячо спорят о проблемах квантовой механики, и я получил немало удовольствия от сочинения собственных статей на эту тему.
Но прежде чем рассказывать о своем понимании того, как все это увязывается (гл. 8 ), я хочу вернуться в прошлое, чтобы дать возможность в полной мере прочувствовать безумство квантовой механики и то беспокойство, которое она вызывает.
Атомное «лего»
Когда в прошлый раз я спросил Александра, своего сына, какой подарок он желает получить ко дню рождения, он ответил: «Удиви меня! Подойдет все, что угодно, если это будет „Лего“». Я тоже люблю «Лего», и, мне кажется, наша Вселенная – тоже: все в ней состоит из одинаковых «строительных блоков» (рис. 7.1 ). По-моему, замечательно, что один набор космического конструктора (80 стабильных атомов периодической таблицы[29]) может служить для создания вообще всего на свете – от камней до кроликов, от звезд до стереосистем, – и вся разница сводится к тому, сколько нужно деталей каждого типа и как они расположены.
Рис. 7.1.Карандашный грифель сделан из графита, который состоит из слоев атомов углерода (здесь дано изображение, полученное сканирующим туннельным микроскопом), которые состоят из протонов, нейтронов и электронов. Протоны и нейтроны состоят из кварков, которые могут, в свою очередь, оказаться колеблющимися струнами. Сменный грифель, который я покупаю для работы, содержит около 2 × 1021 атомов, так что вы могли бы разрезать его пополам 71 раз.
Идея конструктора «Лего» – использование неделимых строительных блоков – имеет, конечно, долгую историю, причем самим термином «атом» мы обязаны древним грекам: это слово означает «неделимый». Платон в диалоге «Тимей» доказывал, что четыре основных элемента, признаваемых в то время (земля, вода, воздух и огонь), состоят из атомов четырех типов. Атомы представляют собой крошечные невидимые математические объекты – соответственно кубы, икосаэдры, октаэдры и тетраэдры, – четыре из пяти правильных многогранников, называемых в честь древнегреческого философа платоновыми телами (рис. 7.2 ). Платон писал, что острые углы тетраэдра обуславливают боль, причиняемую огнем, округлая форма икосаэдра обеспечивает текучесть воды, а уникальной способностью кубов к плотной укладке объясняется твердость Земли. Хотя эта очаровательная теория в итоге была опровергнута наблюдением, некоторые ее аспекты устояли, и среди них предположение о том, что каждый химический элемент состоит из определенного типа атомов, а свойства вещества определяются свойствами его атомов. Более того, в гл. 10 я объясню, что самые фундаментальные «строительные блоки» нашей Вселенной – математические (в ином смысле, нежели предполагал Платон: Вселенная не состоит из математических объектов, а сама является частью единственного математического объекта).
Рис. 7.2.Платоновы тела: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Лишь додекаэдр не вошел в платоновскую атомистическую теорию.
Для становления современной атомной теории понадобилось два тысячелетия, а знаменитый австрийский физик Эрнст Мах еще в начале XX века отказывался верить в реальность атомов. Его, безусловно, впечатлили бы наши возможности получения изображений отдельных атомов (рис. 7.1 ) и даже манипулирования ими.
Ядерное «лего»
Огромный успех атомной гипотезы привел к вопросу, не ошибочно ли атом назван атомом, неделимым : если все макроскопические объекты состоят из «кубиков», которые мы называем атомами, те, возможно, тоже делятся на еще меньшие «кубики», которые могут переупорядочиваться?
Мне кажется невероятно элегантным то, что атомы сложены всего из трех типов меньших «кубиков» – их даже меньше, чем в платоновской теории. Мы кратко говорили о них в гл. 3, а на рис. 7.1 видно, как «кубики» этих трех типов (протоны, нейтроны и электроны) компонуются наподобие миниатюрной планетной системы, где электроны обращаются вокруг компактного сгустка протонов и нейтронов – атомного ядра. В то время как Земля удерживается на орбите вокруг Солнца силой гравитации, электроны удерживаются в атомах электрическим взаимодействием, которое притягивает их к протонам (электроны имеют отрицательный заряд, протоны заряжены положительно, а противоположные заряды притягиваются). Поскольку электроны также чувствуют притяжение протонов других атомов, они помогают атомам соединяться друг с другом в более крупные структуры, называемые молекулами. Если атомные ядра и электроны перетасовываются без изменения их числа и типа, мы называем это химической реакцией, независимо от того, происходит ли это быстро, как лесной пожар (при котором в основном атомы углерода и водорода, входящие в состав древесины и листьев, соединяются с кислородом воздуха, образуя молекулы углекислого газа и воды), или медленно, как рост дерева (который в основном представляет собой обратную реакцию, протекающую под воздействием энергии солнечного света).
Столетиями алхимики пытались превратить атомы одного типа в другие: как правило, дешевые, например свинец, в более дорогие, такие как золото. Почему эти попытки терпели неудачу? Типы и названия атомов связаны с числом входящих в них протонов (1 = водород, 79 = золото и т. д.), так что алхимики просто не смогли поиграть в «лего» с протонами, перемещая их из одного атома в другой. Почему им это не удалось? Мы теперь знаем, что неудача постигла алхимиков не потому, что они брались за невозможное, а в основном потому, что у них было недостаточно энергии! Поскольку электрические силы заставляют одинаковые заряды отталкиваться, протоны в ядрах разлетелись бы, если бы их не удерживала вместе еще более могучая сила. Она вполне обоснованно получила название сильного ядерного взаимодействия и работает как своего рода застежка-липучка, удерживающая вместе и протоны, и нейтроны, если они сойдутся достаточно близко. Лишь чудовищное усилие способно преодолеть это взаимодействие: если столкновение двух молекул водорода (каждая из двух атомов) на скорости 50 км/с разрушит их так, что атомы разделятся, то два ядра гелия (каждое из двух протонов и двух нейтронов) понадобится столкнуть с головокружительной скоростью 36 тыс. км/с, чтобы иметь шанс разделить нейтроны и протоны. Указанная скорость составляет около 12 % скорости света (за десятую долю секунды можно добраться от Нью-Йорка до Сан-Франциско).
В природе такие зубодробительные столкновения происходят при очень высоких температурах – миллионах градусов. Когда Вселенная была молода, в ней не было иных атомов, кроме водорода (одиночных протонов), но, поскольку она была чрезвычайно горячей, протоны и нейтроны слипались, а более тяжелые атомы разбивались на части. В процессе расширения и охлаждения Вселенной был период длительностью несколько минут, когда столкновения еще были достаточно сильны, чтобы преодолевать электрическое отталкивание между протонами, но их силы уже не хватало на то, чтобы разъединять «липучки» сильного взаимодействия, которые соединяли протоны и нейтроны в ядра гелия. То был период гамовского первичного нуклеосинтеза (гл. 3 ). В ядре Солнца температура близка к магическому диапазону, в котором атомы водорода могут сливаться, образуя атомы гелия.
Законы экономики говорят нам, что атомы дороги, когда они редки, а законы физики говорят, что они редки, когда для их синтеза требуются необычайно высокие температуры. Распространенные атомы, вроде углерода, азота и кислорода (на них вкупе с водородом приходится до 96 % веса человеческого тела), очень дешевы. Обычные звезды, например Солнце, выбрасывают их во время смертельной агонии, после чего из них формируются новые планетные системы в ходе своего рода космической переработки отходов. Золото, напротив, образуется, когда жизнь звезды оканчивается взрывом сверхновой, событием редким и столь мощным, что на доли секунды ее энерговыделение становится таким же, как у всех звезд в наблюдаемой Вселенной вместе. Неудивительно, что получение золота оказалось алхимикам не по плечу.
«Лего» элементарных частиц
Если вещи вокруг нас сложены из атомов, а атомы из еще меньших частиц (нейтронов, протонов и электронов), то не состоят ли эти последние, в свою очередь, из еще меньших деталей? История научила нас, как отвечать на такие вопросы экспериментально: столкните мельчайшие из известных «строительных блоков» по-настоящему сильно и проверьте, распадутся ли они. Эта процедура производилась на всех крупных коллайдерах, и все-таки не похоже, что электроны состоят из меньших частиц, хотя в ЦЕРНе их сталкивали на скорости, составляющей 99,999999999 % скорости света. С другой стороны, столкновения протонов показали, что и они, и нейтроны состоят из меньших частиц, называемых верхними и нижними кварками . Два верхних и один нижний кварк составляют протон (рис. 7.1 ), а два нижних и один верхний дают нейтрон. Более того, в этих столкновениях было получено множество прежде неизвестных частиц (рис. 7.3 ).
Все эти новые частицы с экзотическими названиями – пионы, каоны, сигма- и омега-гипероны, мюоны, таоны, W- и Z-бозоны – нестабильны и за доли секунды распадаются на более знакомые объекты. Тщательная детективная работа позволила выяснить, что все они, за исключением последних четырех, состоят из кварков – не только из верхнего и нижнего, но еще из четырех новых нестабильных типов, называемых странными, очарованными, прелестными и истинными [30]. Оказалось, что W – и Z -бозоны отвечают за передачу слабого взаимодействия , обусловливающего радиоактивность, и являются братьями фотона, частицы света, которая переносит электромагнитное взаимодействие. Дополнительные члены семейства бозонов называются глюонами . Они как клей, связывающий кварки в более крупные частицы. А недавно обнаруженный бозон Хиггса наделяет другие частицы массой. Кроме того, открыты стабильные призрачные частицы – электронные нейтрино, мюонные нейтрино и тау-нейтрино . Они почти не взаимодействуют с иными частицами: если нейтрино врезается в Землю, то обычно пролетает ее насквозь, не меняя свою траекторию, и улетает в космос. Наконец, почти все эти частицы имеют «злых близнецов» – античастицы . При столкновении пара «близнецов» может аннигилировать друг друга с выбросом чистой энергии. В табл. 7.2 представлен список основных частиц и связанных с ними концепций, обсуждаемых в книге.
Рис. 7.3.Стандартная модель физики элементарных частиц.
До сих пор нет признаков того, чтобы какая-либо частица из всех этих бозонов, кварков, лептонов (общее название для электрона, мюона, таона и соответствующих нейтрино) или их античастиц состояла из меньших или более фундаментальных частиц. Однако с учетом кварков как «строительных блоков» в иерархии нашего «лего» (рис. 7.1 ) получается три полных уровня. И не надо быть Шерлоком Холмсом, чтобы задаться вопросом, нет ли еще уровней, которые мы не можем открыть просто потому, что наши ускорители частиц не дают достаточной энергии. В самом деле, теория струн (гл. 6 ) предполагает, что так и есть. Если бы мы могли сталкивать частицы с гораздо (возможно, в 10 трлн раз) большей энергией, чем сегодня, то открыли бы, что все состоит из крошечных колеблющихся струн и что и что различные типы колебаний одинаковых фундаментальных струн могут соответствовать различным типам частиц (подобно тому, как колебания гитарной струны соответствуют разным нотам). Конкурирующая теория, известная как петлевая теория гравитации, предполагает, что все состоит не из струн, а из спиновой сети квантованных петель возбужденных гравитационных полей. Это труднопроизносимо, и если вы не вполне понимаете, что это значит, не беспокойтесь: и среди самых активных разработчиков теории струн и петлевой квантовой гравитации найдутся те, кто не скрывают, что не до конца понимают собственные теории… Так из чего же все состоит? Основываясь на современных экспериментальных данных, ответим: мы этого еще не знаем, но есть серьезные основания предполагать, что все, с чем мы были знакомы – включая саму ткань пространства-времени, – в конечном счете состоит из более фундаментальных «строительных блоков».
Математическое «лего»
Несмотря на то, что мы пока не знаем окончательного ответа на вопрос, из чего все состоит, мы получили очень интригующий намек. Лично мне кажется безумием, что, сталкивая два протона на Большом адронном коллайдере в ЦЕРНе, мы можем получить Z -бозон, который весит в 97 раз больше протона. Я привык думать, что масса сохраняется. Ну не очевидно ли, что столкнув два «Феррари», вы не получите круизный лайнер – ведь он весит больше, чем два автомобиля? Однако если вам кажется, что образование подобных новых частиц – это мошенничество наподобие финансовой пирамиды, то вспомните, что, как учил нас Эйнштейн, энергия E может превращаться в массу m по формуле E = mc 2, где c – скорость света. Так что если при столкновении частиц у вас в распоряжении есть огромный запас энергии движения, то доли этой энергии действительно позволено пойти на образование новых частиц. Иными словами, полная энергия сохраняется, но столкновение частиц «переупаковывает» эту доступную энергию по-новому, что может приводить к превращению ее доли в новые частицы, которых в исходный момент не существовало. То же самое происходит с импульсом [31]: полная его величина сохраняется, но он перераспределяется в ходе столкновения так же, как в бильярде, когда биток, отправляя прежде неподвижный шар в лузу, замедляется. Одним из самых важных открытий в физике были новые величины, которые, подобно энергии и импульсу, кажутся всегда сохраняющимися (знакомый пример – электрический заряд), но есть и иного рода сохраняющиеся величины – изоспин и цвет. Есть также величины, которые сохраняются при многих важных обстоятельствах, в частности лептонное число (количество лептонов минус количество антилептонов) и барионное число (разность числа кварков и антикварков, разделенная на три, так что нейтроны и протоны считаются за + 1). В табл. 7.1 приведены квантовые числа – значения этих величин для разных частиц. Обратите внимание: большинство значений выражено целыми числами или простыми дробями. Значения трех масс как следует не измерены.
Я помню шутку времен холодной войны: на Западе все, что не запрещено, то разрешено, а на Востоке все, что не разрешено, то запрещено. Физика частиц, по-видимому, предпочитает первую формулу, и любая реакция, которая не запрещена (из-за нарушения одного из законов сохранения), похоже, в природе действительно происходит. Это значит, что о фундаментальном «лего» физики частиц можно думать не как о собственно частицах, а как о сохраняющихся величинах. Тогда физика частиц – это просто перераспределение новым способом энергии, импульса, заряда и других сохраняющихся величин. В табл. 7.1 приводится «рецепт приготовления» верхнего кварка: смешать 2/3 единицы заряда, 1/2 единицы спина, 1/2 единицы изоспина, 1/3 единицы барионного числа и дополнить энергией до нескольких МэВ.
Так из чего состоят квантовые числа вроде энергии и заряда? Ни из чего – это просто числа! У кота тоже есть энергия и заряд, но у него, помимо этих чисел, есть много других свойств, например кличка, запах и характер, так что нельзя сказать, будто кот – чисто математический объект, полностью описываемый двумя числами. А вот наши друзья из мира элементарных частиц полностью описываются своими квантовыми числами и, по-видимому, помимо этих чисел свойств не имеют. В этом смысле мы завершили полный круг и возвратились к Платону: наимельчайшие «кубики», из которых состоит все остальное, кажутся чисто математическими, не имеющими никаких свойств, кроме математических. Мы вернемся к этой идее в гл. 10 и увидим, что это лишь вершина математического айсберга.
На техническом уровне некоторые специалисты по физике элементарных частиц любят на вопрос, что такое частица, бойко отвечать: «Элемент неприводимого представления группы симметрий лагранжиана». Это чисто математическое понятие лишь немного более общее, чем представление о числовом множестве. И, конечно, теория струн или ее конкурент могут углубить наше понимание того, что в действительности представляют собой частицы, но все эти ведущие теории просто заменяют одни математические сущности иными. Так, если квантовые числа из табл. 7.1 окажутся соответствующими типами колебаний суперструн, не стоит думать о струнах как о крошечных объектах с внутренними свойствами, будто это колтуны в рыжевато-коричневой кошачьей шерсти. Следует смотреть на них как на чисто математические конструкции, которые физики называют «струнами» лишь для того, чтобы подчеркнуть их одномерную природу и провести аналогию с чем-либо знакомым и в меньшей степени математическим.
Табл. 7.2.Основные физические термины, необходимые для понимания микромира.
Подводя итог, скажем, что природа сродни конструктору с иерархическим устройством. Если мой сын играет со своим «лего», полученным ко дню рождения, то все, что он может перестраивать, – фабричные «кубики». Если бы он играл в атомное «лего» – поджигал, погружал в кислоту или иным способом перестраивал их атомы, – он занимался бы химией. Если бы он играл с нуклонным «лего», перегруппируя нейтроны и протоны в другие типы атомов, это была бы ядерная физика. Если бы он сталкивал детали друг с другом на околосветовой скорости, реорганизуя энергию, импульс, заряд и т. д. составляющих их нейтронов, протонов и электронов в новые частицы, он бы занимался физикой элементарных частиц. Детали «лего» самого глубокого уровня, по-видимому, являются чисто математическими объектами.
Фотонное «лего»
Но не только «грубая материя» состоит из «строительных блоков», подобных деталям «Лего». Свет также состоит из частиц, фотонов , что было показано Эйнштейном в 1905 году.
Четырьмя десятилетиями ранее Джеймс Клерк Максвелл открыл, что свет – это электромагнитные волны, разновидность электрического возмущения. Если вы научитесь точно измерять напряжение между двумя точками в световом луче, то обнаружите, что оно колеблется во времени. Частота f этих колебаний (сколько раз они повторяются за секунду) определяет цвет света, а сила колебаний (максимальные значения в вольтах) – интенсивность света. «Омнископ» из гл. 4 измеряет такое напряжение. Мы, люди, даем электромагнитным волнам названия в зависимости от их частоты (в порядке увеличения частоты мы называем их радиоволнами; микроволнами; инфракрасным излучением; красным, оранжевым, желтым, зеленым, голубым, синим и фиолетовым светом; ультрафиолетовым, рентгеновским и гамма-излучением), но все они представляют собой формы света и состоят из фотонов. Чем больше фотонов испускает объект каждую секунду, тем ярче он кажется.
Эйнштейн понял, что количество энергии E в фотоне определяется его частотой f по формуле E = hf , где h – постоянная Планка. Постоянная h очень мала, поэтому типичный фотон содержит очень мало энергии. Если я одну секунду лежу на пляже, меня согревают около секстиллиона (1021) фотонов. Вот почему это воспринимается как непрерывный поток света. Однако если у моих друзей есть солнечные очки, поглощающие 90 % света, я смогу надеть 21 пару сразу и только один из всех исходных фотонов будет доходить до меня каждую секунду. Это можно подтвердить с помощью высокочувствительного детектора.
Эйнштейн удостоился Нобелевской премии за то, что он использовал эту идею для объяснения фотоэлектрического эффекта : как выяснилось, способность света выбивать электроны из металла зависит лишь от частоты (энергии фотонов), но не от интенсивности (числа фотонов). Низкочастотные фотоны не обладают достаточной энергией для выполнения этой задачи. Фотоэлектрический эффект связан с процессами, используемыми в современных солнечных батареях и светочувствительных матрицах цифровых камер.
Макс Планк получил в 1918 году Нобелевскую премию за демонстрацию того, что идея фотона позволила разрешить другую знаменитую загадку: почему расчеты теплового излучения горячего тела прежде не давали правильного результата. Радуга (рис. 2.5 ) демонстрирует спектр солнечного света, то есть количество содержащегося в нем света разных частот. Физики знали, что температура T тела является некоей мерой того, насколько быстро движутся его частицы, и что обычная энергия E движения частиц описывается формулой E = kT , где k – число, называемое постоянной Больцмана. Когда частицы на Солнце сталкиваются, энергия их движения в количестве примерно kT превращается в энергию света. К сожалению, точное предсказание вида радуги наталкивалось на так называемую ультрафиолетовую катастрофу: интенсивность излучения бесконечно возрастала на правом краю рис. 2.5 (в направлении высоких частот), как будто при взгляде на любое теплое тело вы должны были ослепнуть от его гамма-излучения. Вас спасает то, что свет состоит из частиц: Солнце может испускать световую энергию только по одному фотону за раз, а характерная энергия kT , доступная для образования фотонов, не дотягивает до энергии hf , необходимой для испускания даже одного гамма-кванта.
Выше закона?
Если все состоит из частиц, каким физическим законам они подчиняются? Если мы знаем, что делают в данный момент все частицы во Вселенной, то по каким уравнениям можно рассчитать, как они будут себя вести в будущем? Если такие уравнения существуют, то мы можем надеяться, что они позволят – по крайней мере, в принципе – предсказывать будущее исходя из знания настоящего: от траектории только что поданного бейсбольного мяча до победителей Олимпийских игр 2048 года – только выясните, что будут делать все эти частицы, и получите ответ.
Хорошая новость состоит в том, что, похоже, действительно существует почти то самое уравнение, которое нам нужно. Это уравнение Шредингера (рис. 7.4 ). Однако оно не предсказывает точно, как поведут себя частицы. Даже почти сто лет спустя после того, как Эрвин Шредингер его записал, физики продолжают спорить об его смысле.
Все согласны с тем, что микроскопические частицы не подчиняются классическим законам физики, которые мы изучаем в школе. Поскольку атом напоминает планетную систему (рис. 7.1 ), естественно предположить, что электроны обращаются вокруг ядра по законам Ньютона, как и планеты вокруг Солнца. В самом деле, если выполнить расчеты, идея сначала выглядит многообещающей. Игрушку йо-йо можно раскрутить над головой за шнурок. Если он оборвется, йо-йо начнет двигаться по прямой с постоянной скоростью, так что сила, с которой вы ее тянете, требуется для отклонения ее от прямолинейного движения и вывода на круговое. В Солнечной системе эту силу обеспечивает тяготение Солнца, а в атоме – сила электрического притяжения со стороны атомного ядра. Если сделать расчет для орбиты размером с атом водорода, получится, что электрон вращается практически с той же скоростью, которая измерена в лаборатории – настоящий теоретический триумф! Однако для большей точности в расчеты надо включить еще один эффект: электрон, который испытывает ускорение (изменение скорости или направления движения), будет излучать энергию – в вашем мобильном телефоне колебания электронов внутри антенны используются, чтобы испускать радиоволны. Поскольку энергия сохраняется, излучаемая энергия должна откуда-то браться. В телефоне она поступает из аккумулятора, а в атоме водорода – из движения электрона. Она заставляет его опускаться все ближе к атомному ядру, подобно тому, как сопротивление воздуха в верхних слоях атмосферы заставляет спутники на низких околоземных орбитах терять энергию движения и, в конце концов, падать. Это означает, что электрон крутится не по орбите, а по смертельной спирали (рис. 7.5 ): примерно после 100 тыс. оборотов он врежется в протон, то есть произойдет коллапс атома водорода, долгая и счастливая жизнь которого длится около 0,02 нс[32].
Рис. 7.4.Эрвин Шредингер умер, но его уравнение живет. С 1996 г., когда я сделал этот снимок, шрифт надписи загадочно изменился. Может, и вправду квантовые причуды никогда не заканчиваются?
Это плохо. Очень плохо. Здесь речь не о небольшом, скажем на 1 %, расхождении теории с экспериментом, а о предсказании того, что все атомы водорода (а также все прочие атомы) в нашей Вселенной коллапсируют за миллиардную долю того времени, которое вы тратите на то, чтобы прочесть последнее слово в этом предложении. С учетом того, что в действительности большинство атомов водорода существует около 14 млрд лет, они уже прожили на 28 порядков величины дольше, чем предсказывает классическая физика. Данный расчет был худшим количественным предсказанием в физике, пока сомнительный рекорд не был превзойден расхождением на 123 порядка величины между предсказанной и измеренной плотностью темной энергии (гл. 3 ).
Физики, считавшие, что элементарные частицы подчиняются законам классической физики, сталкивались и с иными проблемами. Например, количество энергии, требуемой для нагревания очень холодных предметов, оказалось меньше, чем предсказывалось. Проблемы можно перечислять и дальше, но послание Природы и так ясно: микроскопические частицы нарушают законы классической физики.
Что же, микрочастицы ставят себя выше закона? Нет, они подчиняются другому закону – шредингеровскому.
Кванты и радуга
Чтобы объяснить, как устроены атомы, датский физик Нильс Бор предложил в 1913 году весьма радикальную идею. Возможно, не только материя и свет квантуются (то есть существуют в виде дискретных фрагментов, подобных деталям «Лего»). Это может относиться и к свойствам движения . Что если движение не непрерывно, а скачкообразно, как в компьютерной игре «Пэкмен» или в фильмах с Чарли Чаплином, где частота кадров была слишком низкой? На рис. 7.5 показана модель атома Бора: круговые орбиты разрешены, лишь если их окружности имеют определенные, магические длины. Существует наименьшая орбита, помеченная n = 1, а далее есть орбиты большего размера (n = 2 и т. д.), радиусы которых в n 2 раз больше радиуса минимальной орбиты[33].
Рис. 7.5.Эволюция наших представлений об атоме водорода. Классическая (планетарная) модель Эрнеста Резерфорда, к сожалению, была неустойчивой: в ней электрон по спирали падал на находящийся в центре протон (я изображаю, как бы это выглядело, если бы электрическое взаимодействие было в 20 раз сильнее; иначе спираль имела бы около 100 тыс. витков, что невозможно нарисовать). Модель Бора удерживает электрон на дискретных орбитах, пронумерованных n = 1, 2, 3, …, между которыми он перепрыгивает, когда испускает или поглощает фотоны. Эта модель не работает для всех атомов, кроме атома водорода. В модели Шредингера один электрон находится одновременно во многих местах электронного облака, форма которого задается математической функцией Ψ.
Первый, самый очевидный успех состоял в том, что боровский атом не коллапсировал, как классический (рис. 7.5 , слева). Когда электрон находится на самой внутренней орбите, просто не существует меньшей орбиты, куда он мог бы перескочить. Однако модель Бора объясняла далеко не только это. Высокие орбиты обладают большей энергией, чем низкие, а полная энергия сохраняется. Поэтому, когда электрон, будто «Пэкмен», соскакивает на более низкую орбиту, избыток энергии должен быть испущен атомом в виде фотона (рис. 7.5 ), а чтобы занять более высокую орбиту, электрон должен быть способен заплатить энергетическую «цену», поглотив фотон с нужной энергией. Поскольку существует только дискретный набор орбитальных энергий, атом может испускать и поглощать фотоны лишь с «магическими» энергиями. Иными словами, атом может испускать и поглощать свет только на определенных частотах. Это разрешает давнюю проблему. В спектре солнечного света (рис. 2.5 ) обнаружены темные линии на определенных частотах (то есть некоторые цвета отсутствуют), а при изучении горячих светящихся газов в лаборатории наблюдалось, что каждый тип атомов имеет уникальный спектральный «отпечаток» в виде частот света, которые он может испускать и поглощать. Боровская модель атома не просто объяснила существование этих спектральных линий, но и позволила точно вычислить их частоты для водорода[34].
Это был отличный результат, и Бор получил за него Нобелевскую премию (как и большинство остальных ученых, упомянутых в этой главе). Плохой новостью стало то, что боровская модель не работала для атомов, отличных от водорода, за исключением случая, когда с них сорваны все электроны, кроме одного.
Образование волн
Несмотря на первые успехи, физики по-прежнему не знали, что делать с этими странными, на первый взгляд произвольными квантовыми правилами. Что они в действительности означают? Почему угловой момент квантуется? Есть ли этому более глубокое объяснение? Одно из них предложил Луи де Бройль: электроны (а на самом деле все частицы) обладают волновыми свойствами, подобно фотонам. Во флейте стоячие звуковые волны могут колебаться только на некоторых определенных частотах. Может быть, чем-либо аналогичным определяются и частоты, с которыми электроны обращаются в атомах?
Рис. 7.6.Волны в емкости с водой (слева ) и на Солнце (справа ).
Рис. 7.7.Если стрелять частицами (скажем, электронами или фотонами из лазерного ружья) по барьеру с двумя вертикальными щелями, то, согласно предсказанию классической физики, частицы будут попадать в детектор вдоль двух вертикальные полос позади щелей. Квантовая механика предсказывает, что каждая частица будет вести себя как волна, проходя через обе щели в квантовой суперпозиции, интерферируя при этом сама с собой и образуя интерференционную картину (рис. 7.6 ). Этот знаменитый эксперимент демонстрирует, что квантовая механика корректна: частицы регистрируются у целого ряда вертикальных полос.
Две волны способны без помех проходить друг сквозь друга, как круги на поверхности воды (рис. 7.6 , слева). В любой момент их воздействия просто складываются. В некоторых местах видно, что гребни двух волн складываются в еще более высокий гребень (конструктивная интерференция), в других местах гребень одной волны подавляется впадиной другой, оставляя воду совершенно невозмущенной (деструктивная интерференция). На поверхности Солнца (рис. 7.6 , справа) наблюдаются звуковые волны в горячем газе (плазме). Если такая волна обойдет вокруг Солнца (справа), она погасит сама себя в результате деструктивной интерференции, если только не совершит за время обхода целое число колебаний, чтобы, вернувшись, совпасть с самой собой. Это значит, что, как и флейта, Солнце колеблется только на некоторых определенных частотах[35].
В своей диссертации 1924 года де Бройль применил это рассуждение к волнам, распространяющимся не по Солнцу, а по атому водорода, и получил точно те же частоты и энергии, которые предсказывала модель Бора. А двухщелевой эксперимент (рис. 7.7 ) более явно продемонстрировал, что частицы ведут себя как волны.
Волновая картина делает нагляднее и объяснение того, почему атомы не коллапсируют, как предсказывает классическая физика: если попытаться заключить волну в очень малое пространство, она немедленно начнет распространяться в стороны. Например, если дождевая капля падает на поверхность воды в тазу, она сначала возмущает воду лишь в очень небольшой области, с которой она соприкоснулась, но возмущение начинает быстро распространяться во все стороны в виде кольцевых волн (рис. 7.6 ). В этом суть принципа неопределенности Гейзенберга . Вернер Гейзенберг показал: если зажать некий объект в малую область пространства, он приобретет огромный случайный импульс, который заставит его двигаться и чувствовать себя менее стесненным. Иными словами, объект не может одновременно иметь точное положение и точную скорость![36]Это означает, что если атом водорода попробует коллапсировать (рис. 7.5, слева), притянув электрон к протону, то растущая «зажатость» придаст электрону достаточный импульс, а с ним и скорость, чтобы вновь улететь на высокую орбиту.
Диссертация де Бройля вызвала большое волнение, и в ноябре 1925 года Эрвин Шредингер провел по ней семинар в Цюрихе. После его доклада Питер Дебай задал ключевой вопрос: «Вы говорите о волнах, но где же волновое уравнение?» Шредингер взялся его вывести и подобрал (рис. 7.4 ) отмычку к большей части современной физики. Эквивалентная формулировка, использующая таблицы чисел, называемые матрицами , была примерно в то же время предложена Максом Борном, Паскуалем Йорданом и Вернером Гейзенбергом. На этом новом математическом фундаменте квантовая теория испытала взрывной рост. Всего за несколько лет удалось успешно объяснить целый ряд прежде непонятных результатов измерений, включая спектры сложных атомов и различные числовые параметры, описывающие свойства химических реакций. Наконец, квантовая физика дала нам лазер, транзистор, интегральные схемы, компьютеры и смартфоны. Развитием успеха квантовой механики стала расширяющая ее квантовая теория поля, которая лежит в основе передовых современных исследований, таких как поиск частиц темной материи.
Что служит признаком хорошей науки? Есть несколько определений науки, которые мне нравятся, и одно из них – это сжатие данных , объяснение многого посредством немногого. От хорошей науки вы получаете больше, чем в нее закладываете. Я применил обычную программу-архиватор к текстовому файлу, содержащему черновик этой главы, и он сжался втрое за счет использования закономерностей и шаблонов, которые встречаются в моем тексте. Сравним это с квантовой механикой. Я только что