Составляющие составного Движения
Составное движение образуется из нескольких составляющих движений звеньев в сочленениях биокинематической цепи.
В простейших случаях в механике складываются два поступательных движения двух тел.
Когда в составном движений принимают участие два тела, то обычно составляющие движения называют переносными и относительными. Платформа как бы переносит на себе движение по ней груза; движение платформы переносное. Движение же груза по платформе относительно системы отсчета, связанной с самой платформой, относительное. Тогда движение груза в неподвижной системе отсчета (Земля) результирующее: это результат двух составляющих движений.
В теле человека таких движений не бывает, так как почти во всех суставах звенья движутся вокруг осей сочленений. В биокинематических цепях обычно движется много звеньев; одни «несут» на себе движения других (несущие и несомые движения). Несущее движение (например, мах бедром при выносе ноги в беге) изменяет несомое (сгибание голени).
При движениях в незамкнутой кинематической цепи угловые перемещения, скорости и ускорения, если они направлены в одну сторону, складываются. Разнонаправленные движения не складываются, а вычитаются (суммируются алгебраически).
Сложнее составные движения, в которых составляющие движения вращательные (по дуге окружности) и поступательные (вдоль радиуса)
В составном движении, образованном из вращательных составляющих движений (в биокинематической цепи), вследствие суммирования равнонаправленных и вычитания разнонаправленных движений в разных суставах всегда происходит прибавление движения и вдоль радиуса (поступательное). Значит, биокинематическая цепь (по прямой линии — от ее начала до конца) укорачивается или удлиняется (например, при махе рукой, ногой в прыжках). Вектор v груза повернулся в сторону вращения. Эти два изменения скорости обусловлены ускорением Кориолйса. Когда биокинематическая цепь укорачивается, кориолисово ускорение звеньев, приближающихся к оси вращения, направлено навстречу вращению, а когда удлиняется, — в сторону вращения. От кориолйсова ускорения зависит убыстрение и замедление углового поворота, что можно объяснить появлением кориолйсовых сил инерции.
В биокинематических цепях с большим числом степеней свободы движений кинематика очень сложна. Каждое движение в сочленениях незамкнутой цепи (например, свободной конечности) влияет на траектории, скорости и ускорения более отдаленных звеньев. В этих случаях характеристики составных движений проще регистрировать, чем рассчитывать. Чаще всего определить их заранее нельзя: слишком уж много возможных вариантов. В процессе тренировки происходит согласование движений звеньев, необходимое для достижения цели, обеспечивается необходимая плавность и рациональная форма траекторий, происходит согласование величины и направлений скоростей; регулируется быстрота нарастания и снижения ускорений. Последнее определяет резкость движений и зависит от быстроты увеличения и ослабления усилий. Одновременно ритмы движений звеньев и цепей согласуются в общий ритм действия. Происходит сложная интеграция движений биомеханической системы посредством процесса управления движениями.
.Движения биокинематических цепей
В зависимости от направления скоростей движения звеньев тела человека могут быть возвратно-вращательными, возвратно-поступательными и круговыми.
Строение сочленений не позволяет совершать движения в суставах по «принципу колеса», т. е. делать неограниченный поворот вокруг оси сустава в одну сторону. Поэтому почти все движения имеют возвратный характер. Возвратно-вращательные движения напоминают движения маятника вокруг оси, расположенной поперек биокинематической цепи (сгибание-разгибание) или продольно (супинация-пронация).
Определенное согласование вращательных движений в различных суставах биокинематической цепи позволяет конечным звеньям двигаться поступательно (кисть боксера при вращательных движениях в плечевом и локтевом суставах; туловище бегуна при отталкивании ногой). Пример возвратно-поступательного движения — работа пилой, напильником. В этих случаях угловые скорости противоположно направленных движений одинаковы (пара скоростей).
Наконец, в шаровидных суставах возможно сложное круговое движение, когда продольная ось звена описывает коническую поверхность. При этом согласуются два движения: самой продольной оси и звена вокруг этой оси. Только такое конусообразное движение и может выполняться без обязательных возвратных движений.
В возвратных движениях имеется критическая точка, в которой происходит смена направления движения (амортизации на отталкивание — в беге, заноса весла на гребковое движение — в гребле, замаха ракеткой на ударное движение — в теннисе). В каждом суставе направления и размах движений ограничены. Значит, звено в суставе может занимать не любое, а лишь анатомически возможное положение. Однако из бесчисленного множества возможных движений только малая часть вызвана потребностями человека и отвечает энергетическим требованиям. Эти движения отобраны и закрепились в человеческой практике как наиболее рациональные, стали привычными к общеупотребительными.
Динамика составных движений
В динамике абсолютно твердого тела действие силы рассматривается как причина изменения движения. Однако если силы уравновешены, то изменения движения не произойдет. В деформируемом теле возникает при этом деформация и связанное с нею изменение напряжения внутри тела (статическое действие).
Сила, действующая статически, уравновешена другой силой и вызывает не ускорение, а только деформацию тела. Силу, действующую статически, измеряют уравновешивающей ее силой. Если на данное тело М действуют с одинаковыми силами F A и F B два тела А и В , то эти силы взаимно уравновешиваются. Обе силы
действуют статически, ускорения нет, скорость тела М не изменяется. Каждая из этих сил (действие имеет равное и противоположное противодействие (реакции R A и R B ). В случае уравновешивания имеются три тела (М, А, В) и два взаимодействия. Следует подчеркнуть, что уравновешиваются F A и F B . Соответствующие действия и противодействия F A и # А , а также F B и R B не уравновешиваются, так как они приложены к разным телам.
Как показано на рис. 30, б, силы могут действовать статически в покое (реакция опоры R уравновешивает силу тяжести гимнаста G ), а также (рис. 30, в) в движении, направленном перпендикулярно к уравновешивающей силе (реакция опоры R уравновешивает силу тяжести скользящего конькобежца G ), и в движении по направлению уравновешенной силы (сопротивление воздуха и трение лыж о снег Q уравновешивают при постоянной скорости спуска скатывающую составляющую S силы тяжести лыжника G — рис. 30, г). Реакция опоры R уравновешивает нормальную составляющую ( N ). Уравновешенная сила независимо от покоя или направления движения сама по себе не изменяет скорости тела.
Во всех случаях уравновешенная сила обусловливает только деформацию того тела, к которому она приложена. Нелишне заметить, что при взаимном уравновешивании статически действуют обе силы.
Сила, действующая динамически, не уравновешена другой силой. Она вызывает ускорение, а также деформацию тела, к которому приложена. Такую силу измеряют по изменению движений тела, к которому она приложена, но при этом обычно не определяют затрат работы на деформацию.
Сила F m , приложенная к телу М), вызовет ускорение, зависящее от массы этого тела. Однако в реальных условиях необходимо учитывать, что всегда существуют другие тела (Земля, среда — воздух, вода и пр.), которые могут оказывать тормозящее действие. Поэтому в принципе и здесь не будет взаимодействия только
двух тел. Сила, действующая динамически (действие), вызывает ускорение и деформацию, а также противодействие ускоряемого тела — силу инерции. Зная массу ускоряемого тела и его ускорение под действием динамической силы, определяют ее величину и направление.
Силы, приложенные к звеньям тела человека, действуя динамически, приводят к различному результату. В зависимости от того, как направлены силы относительно скорости движущегося тела, различают:
— движущие силы, которые совпадают с направлением скорости (попутные) или образуют с ним острый угол и могут, совершать положительную работу;
— тормозящие силы, которые направлены противоположно направлению скорости (встречные) или образуют с ним тупой угол и могут совершать отрицательную работу;
— отклоняющие силы, перпендикулярные к направлению скорости и увеличивающие кривизну траектории;
— возвращающие силы, также перпендикулярные к направлению движения, но уменьшающие .кривизну траектории.
Обе последние группы сил непосредственно не изменяют величину тангенциальной (касательной) скорости.
От соотношения сил, приложенных к каждому звену тела, зависит и результат их действия.
Тормозящие силы имеются всегда. Если движущие силы больше тормозящих, то их разность—ускоряющая сила—обусловливает увеличение скорости, сообщает телу положительное ускорение, совершает положительную работу, увеличивает кинетическую энергию тела. Необходимо подчеркнуть, что не вся движущая сила обусловливает ускорение, а только ее избыток над тормозящей силой, т. е. ускоряющая сила. Значит не вся движущая сила совершает работу по передвижению звеньев. Значительная часть работы переходит в механическую энергию деформации и, кроме того, в немеханические формы энергии (прежде всего в тепловую). Если нет движущих сил (у них нулевая величина — движение происходит по инерции) или они меньше тормозящих, то их разность — замедляющая сила — уменьшает скорость, обусловливает отрицательное ускорение (замедление). От соотношения отклоняющих и возвращающих сил зависит действие поворачивающей силы, изменяющей кривизну траектории. С уменьшением поворачивающей силы траектория выпрямляется, приближаясь к прямолинейной.
Силы, приложенные к звену в месте контакта с соседним, — суставные силы. Силы, приложенные к звену тела на плече силы, создают относительно оси сустава суставные моменты. Действие их в основном такое же, как и самих сил: ускоряющее, замедляющее, поворачивающее. В конечном счете именно действие суставных сил и суставных моментов сил и вызывает изменение положений тела и изменение движений.
Скорости звеньев изменяются в результате импульсов сил и моментов сил. Множество сил обусловливает для каждого звена в сочленении результирующий импульс момента сил. Каждое звено
изменяет скорость вращения вокруг оси в суставе вследствие именно к нему приложенных сил. Причины движений для каждого звена в биокинематических цепях разные. Именно поэтому в материальной системе при ее разнообразных движениях нельзя найти одну равнодействующую силу, которая заменяла бы для всех звеньев все силы, приложенные к каждому звену. Можно лишь устанавливать равнодействующие силы и моменты сил для каждого звена.
В материальной системе не действуют аксиомы статики о приложении двух равных и противоположных сил и р переносе вектора силы по его направлению. Приложение двух сил или перенос силы вызывает деформацию и изменяет напряжение. Вектор силы в материальной системе не скользящий, а связанный, и поэтому его переносить нельзя. По этой же причине в материальной системе нельзя складывать параллельные силы (тяжести, инерции) и понятия «центр тяжести», «центр инерции» для нее не имеют физического смысла. Однако для расчетов, а также для уяснения характера процессов применяют прием отвердения. Условно считают биомеханическую систему на данный момент времени отвердевшей, превратившейся в одно твердое тело. Тогда можно найти положения ЦМ такими же способами, как центра тяжести твердого тела; можно привести силы к точке; возможен перенос реакции опоры в ЦМ и другие операции. Делаются в биомеханике и иные допущения: множество фактических источников сил сводится к немногим; тело человека рассматривается по редуцированной (сокращенной) схеме (14 или 16 звеньев вместо более 200) и др. Считается, что усилия передаются от одного звена к другому без потерь, в то время как полнота передачи определяется суставной жесткостью, зависящей от мышечных суставных моментов, от напряженности мышц. Делая подобные упрощения, без которых вообще невозможно изучать движения человека, следует ясно понимать характер и степень допущений, чтобы правильно оценивать получаемые результаты.
Динамические характеристики
Все движения человека и движимых им тел под действием сил изменяются по величине и направлению скорости. Чтобы раскрыть механизм движений (причины их возникновения и ход их изменения), исследуют динамические характеристики. К ним относятся инерционные характеристики (особенности самих движущихся тел) , силовые (особенности взаимодействия тел) и энергетические (состояния и изменения работоспособности, биомеханических систем) .
Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости.
Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а также в особенностях изменения его под действием сил.
Понятие инерции раскрывается в первом законе Ньютона: "Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние".
Говоря проще: тело сохраняет свою скорость, а также под действием внешних сил изменяет ее.
Масса - это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению.
Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.
Момент инерции - это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс веек его частиц на квадраты их расстояний от данной оси вращения.
Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше; если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.
Силовые характеристики. Известно, что движение тела может происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина движения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.
Сила — это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой.
Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависит не от силы, а от момента силы.
Момент силы - это мера вращающего действия силы на тело. Он определяется произведением силы на ее плечо.
Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте по часовой стрелке.
Чтобы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения.
Определение силы или момента силы, если известна масса или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, насколько именно изменится скорость. Для этого должно быть известно, как долго была приложена сила. Иначе говоря, следует определить импульс силы (или ее момента) .
Импульс силы - это мера воздействия силы на тело за данный промежуток времени (в поступательном движении) . Он равен произведению силы и продолжительности ее действия.
Любая сила, приложенная даже в малые доли секунды (например: удар по мячу) , имеет импульс. Именно импульс силы определяет изменение скорости, силой же обусловлено только ускорение.
Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы.
Импульс момента силы — это мера воздействия момента силы относительно данной оси за данный промежуток времени (во вращательном движении) .
Вследствие импульса как силы, так и момента силы возникают изменения движения, зависящие от инерционных свойств тела и проявляющиеся в изменении скорости (количество движения, кинетический момент) .
Количество движения — это мера поступательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.
Кинетический момент (момент количества движения) - это мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент равен произведению момента инерции относительно оси вращения на угловую скорость тела.
Соответствующее изменение количества движения происходит под действием импульса силы, а под действием импульса момента силы происходит определенное изменение кинетического момента (момента количества движения) .
Таким образом, к ранее рассмотренным кинематическим мерам изменения движения (скорости и ускорению) добавляются динамические меры изменения движения (количество движения и кинетический момент) . Совместно с мерами действия сил они отражают взаимосвязь сил и движения. Изучение их помогает понять физические основы двигательных действий человека.
Энергетические характеристики. При движениях человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же характеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как меняются виды энергии при движениях и протекает сам процесс изменения энергии.
Работа силы - это мера действия силы на тело при некотором его перемещении под действием этой силы. Она равна произведению модуля силы и перемещения точки приложения силы.
Если сила направлена в сторону движения (или под острым углом к этому направлению) , то она совершает положительную работу, увеличивая энергию движения тела. Когда же сила направлена навстречу движению (или под тупым углом к его направлению) , то работа силы отрицательная и энергия движения тела уменьшается.
Работа момента силы — это мера воздействия момента силы на тело на данном пути (во вращательном движении) . Она равна произведению модуля момента силы и угла поворота.
Понятие работы представляет собой меру внешних воздействий, приложенных к телу на определенном пути, вызывающих изменения механического состояния тела.
Энергия - это запас работоспособности системы. Механическая энергия определяется скоростями движений тел в системе и их взаимным расположением; значит, это энергия перемещения и взаимодействия.
Кинетическая энергия тела - это энергия его механического движения, определяющая возможность совершить работу. При поступательном движении она измеряется половиной произведения массы тела на квадрат его скорости, при вращательном движении половиной произведения момента инерции на квадрат его угловой скорости.
Потенциальная энергия тела -это энергия его положения, обусловленная взаимным относительным расположением тел или частей одного и того же тела и характером их взаимодействия. Потенциальная энергия в поле сил тяжести определяется произведением силы тяжести на разность уровней начального и конечного положения над землей (относительно которого определяется энергия) .
Энергия как мера движения материи переходит из одного вида в другой. Так, химическая энергия в мышцах превращается в механическую (внутреннюю потенциальную упруго-деформированных мышц). Порожденная последней сила тяги мышц совершает работу и преобразует потенциальную энергию в кинетическую энергию движущихся звеньев тела и внешних тел. Механическая энергия внешних тел (кинетическая) , передаваясь при их действии на тело человека его звеньям, преобразуется в потенциальную энергию растягиваемых мышц-антаганистов и в рассеивающуюся тепловую энергию.
Задачи биомеханики спорта
Общая задача изучения движений
Общая задача изучения движений человека в биомеханике спорта — оценка эффективности приложения сил для более совершенного достижения поставленной цели.
Изучение движений в биомеханике спорта в конечном счете направлено на то, чтобы найти совершенные способы двигательных действий и научить лучше их исполнять. Поэтому оно имеет ярко выраженную педагогическую направленность.