Графическое изображение выборки
Раздел 3. Основы математической статистики
Тема 3.1. Выборочный метод. Статистические оценки параметров распределения
Основные понятия математической статистики
На практике функция распределения случайной величины бывает неизвестна и ее определяют по результатам наблюдений или, как говорят, по выборке. Выборкой объема n для случайной величины называется последовательность независимых наблюдений этой величины, где – совокупность значений, принятых независимыми случайными величинами , имеющими тот же закон распределения , что и величина X. В этом случае говорят, что выборка взята из генеральной совокупности величины X, а под законом распределения генеральной совокупности понимают закон распределения случайной величины X. Значения называют выборочными значениями или вариантами. Последовательность вариант, записанных в возрастающем порядке, называется вариационным рядом. Число, указывающее, сколько раз наблюдается данная варианта, называется частотой варианты, а отношение частоты варианты к объему выборки – относительной частотой.
Если – вариационный ряд, а x – произвольное число, и nx – количество выборочных значений, меньших x, то – частота попадания выборочных значений левее точки x в данной выбоке объема n, т. е. частота события .
Эта частота является функцией от x и называется эмпирической функцией распределения случайной величины X, полученной по данной выборке. Если обозначить эту функцию через , то по определению
.
Эмпирическая функция распределения обладает всеми свойствами функции распределения . Так как частота события в n независимых опытах является оценкой вероятности этого события, то значение эмпирической функции распределения в точке x есть оценка вероятности события , то есть оценка теоретической функции распределения :
.
Статистическим рядом распределения называется таблица, которая содержит вариационный ряд и соответствующие частоты или относительные частоты членов этого ряда (табл. 1).
,
, .
Таблица 1 Таблица 2
x1 | x2 | ... | xk | ... | ||||
n1 | n2 | ... | nk | n1 | n2 | ... | nk | |
w1 | w2 | ... | wk | w1 | w2 | ... | wk |
В случае непрерывного распределения величины X статистический ряд распределения представляет собой таблицу, в которой заданы интервалы значений величины X и соответствующие им частоты или относительные частоты, причем интервалы располагаются в порядке возрастания величины X (табл. 2).
Второй случай легко сводится к первому, если в качестве вариант брать середины интервалов:
, .
Раздел 3. Основы математической статистики
Тема 3.1. Выборочный метод. Статистические оценки параметров распределения
Основные понятия математической статистики
На практике функция распределения случайной величины бывает неизвестна и ее определяют по результатам наблюдений или, как говорят, по выборке. Выборкой объема n для случайной величины называется последовательность независимых наблюдений этой величины, где – совокупность значений, принятых независимыми случайными величинами , имеющими тот же закон распределения , что и величина X. В этом случае говорят, что выборка взята из генеральной совокупности величины X, а под законом распределения генеральной совокупности понимают закон распределения случайной величины X. Значения называют выборочными значениями или вариантами. Последовательность вариант, записанных в возрастающем порядке, называется вариационным рядом. Число, указывающее, сколько раз наблюдается данная варианта, называется частотой варианты, а отношение частоты варианты к объему выборки – относительной частотой.
Если – вариационный ряд, а x – произвольное число, и nx – количество выборочных значений, меньших x, то – частота попадания выборочных значений левее точки x в данной выбоке объема n, т. е. частота события .
Эта частота является функцией от x и называется эмпирической функцией распределения случайной величины X, полученной по данной выборке. Если обозначить эту функцию через , то по определению
.
Эмпирическая функция распределения обладает всеми свойствами функции распределения . Так как частота события в n независимых опытах является оценкой вероятности этого события, то значение эмпирической функции распределения в точке x есть оценка вероятности события , то есть оценка теоретической функции распределения :
.
Статистическим рядом распределения называется таблица, которая содержит вариационный ряд и соответствующие частоты или относительные частоты членов этого ряда (табл. 1).
,
, .
Таблица 1 Таблица 2
x1 | x2 | ... | xk | ... | ||||
n1 | n2 | ... | nk | n1 | n2 | ... | nk | |
w1 | w2 | ... | wk | w1 | w2 | ... | wk |
В случае непрерывного распределения величины X статистический ряд распределения представляет собой таблицу, в которой заданы интервалы значений величины X и соответствующие им частоты или относительные частоты, причем интервалы располагаются в порядке возрастания величины X (табл. 2).
Второй случай легко сводится к первому, если в качестве вариант брать середины интервалов:
, .
Графическое изображение выборки
Графически табл. 1 изображается полигоном частот, представляющим собой ломаную, отрезки которой соединяют на плоскости соседние точки и или и , если строится полигон относительных частот.
В случае табл. 2 исходный интервал, в котором заключены все наблюдаемые значения признака, разбивают на определенное количество равных интервалов длины . После этого строится гистограмма частот – ступенчатая фигура, состоящая из прямоугольников, основания которых равны h, а высоты равны отношению (или для гистограммы относительных частот).
Гистограмма относительных частот является аналогом функции плотности, так как площадь под ней равна единице. Число интервалов разбиения находят по формуле , где n – объем выборки. Тогда длина каждого интервала , где и – максимальное и минимальное значение выборки соответственно.