Два взаимосвязанных понятия расстояния в теории струн
В нашем понимании мира расстояние является настолько фундаментальным понятием, что очень легко недооценить всю его глубину и тонкость. Вспоминая поразительные изменения, которые претерпели понятия о времени и пространстве после открытия специальной и общей теории относительности, в свете новых результатов теории струн мы должны быть несколько более точными даже при определении расстояния. Наиболее осмысленными определениями в физике являются те, которые конструктивны, т. е. дают (по крайней мере, в принципе) способ для измерения того, что определяется. В конце концов, не важно, насколько абстрактным является понятие, — если в нашем распоряжении есть конструктивное определение, всегда можно свести смысл этого понятия к экспериментальной процедуре его измерения.
Как же дать конструктивное определение понятия расстояния? В рамках теории струн ответ на этот вопрос довольно неожиданный. В 1988 г. физики Роберт Бранденбергер и Кумрун Вафа из Гарвардского университета показали, что если пространственная форма измерения является циклической, в теории струн есть два различных, но связанных друг с другом конструктивных определения расстояния. Для каждого определения своя экспериментальная процедура измерения расстояния, и каждое определение, грубо говоря, основано на простом принципе измерения времени, за которое движущийся с постоянной фиксированной скоростью зонд проходит данный отрезок. Различие двух процедур состоит в выборе этого зонда. В первом случае используются струны, не намотанные вокруг циклического измерения, а во втором — струны, которые намотаны вокруг него. Свойство протяженности фундаментального зонда объясняет существование двух естественных конструктивных определений расстояния в теории струн. В теории точечных частиц, где намотка не имеет места, возможно лишь одно такое определение.
Чем отличаются результаты двух процедур? Ответ, который дали Бранденбергер и Вафа, столь же поразителен, сколь и нетривиален. Основную идею можно проиллюстрировать с помощью соотношения неопределенностей. Ненамотанные струны могут свободно двигаться в пространстве, и с их помощью можно измерить полную длину окружности, пропорциональную R. Согласно соотношению неопределенностей их энергии пропорциональны 1/R (вспомним отмеченную в главе 6 обратную пропорциональность энергии зонда расстояниям, которые он способен измерять). С другой стороны, мы видели, что минимальная энергия намотанных струн пропорциональна R. Поэтому, согласно соотношению неопределенностей, если такие струны используются в качестве зондов, то эти зонды чувствительны к расстояниям порядка \/R. Из математической реализации этой идеи следует, что если для измерения радиуса циклического измерения пространства используются оба зонда, с помощью ненамотанных струн будет измерено значение R, а с помощью намотанных — значение 1/R, где, как и выше, все результаты измерений расстояний выражены в единицах планковской длины. Есть равные основания считать результат каждого из измерений радиусом окружности: теория струн демонстрирует, что для разных зондов, которые используются для измерения расстояния, мы можем получить разные ответы. На самом деле это справедливо для всех измерений длин и расстояний, а не только для определения размера циклического измерения. Результаты, полученные с помощью ненамотанных и намотанных струнных зондов, будут обратно пропорциональны друг другу4).
Так почему же, если теория струн действительно описывает нашу Вселенную, мы до сих пор не сталкивались с различными понятиями расстояния в повседневной жизни или научных исследованиях? Всякий раз, говоря о расстояниях, мы опираемся на опыт, в котором есть место лишь для одного понятия расстояния и ни намека на другое понятие. Где мы упустили альтернативную возможность? Ответ в том, что при всей симметрии нашего подхода, для значений R (а, следовательно, и значений 1/R), сильно отличающихся от единицы (что опять означает единицу, умноженную на планковскую длину), одно из конструктивных определений крайне сложно реализовать экспериментально, в то время как второе реализуется весьма просто. По существу, мы всегда выбираем самый простой подход, не подозревая, что существует другая возможность.
Значительное различие в сложности реализации двух подходов обусловлено значительным различием масс используемых зондов, т. е. различием между высокоэнергетической топологической и низкоэнергетической колебательной модой (и наоборот), если радиус R (и 1/R) сильно отличается от планковской длины (когда R = 1). При таких радиусах «высоким» энергиям соответствуют чрезвычайно большие массы зондов (в миллиарды миллиардов раз больше массы протона), а «низким» энергиям соответствуют исчезающе малые массы. Различие двух подходов при этом непреодолимо велико, так как даже создать столь тяжелые струнные конфигурации в настоящее время технически невозможно. На практике можно реализовать лишь один из двух подходов, а именно тот, в котором используется более легкая струнная конфигурация. До сего момента именно на него неявно опирались все предыдущие рассуждения, связанные с понятием расстояния; именно он питает нашу интуицию, и, следовательно, хорошо с ней согласуется.
Игнорируя практическую сторону вопроса, можно сказать, что в описываемой теорией струн Вселенной каждый вправе выбирать любой из двух подходов. Когда астрономы измеряют «размер Вселенной», они регистрируют фотоны, которые, путешествуя по Вселенной, волей случая попадают в их телескопы. Эти фотоны являются легкими струнными модами, и результат равен 1061 планковских длин. Если три известных нам пространственные измерения действительно циклические, а теория струн верна, то астрономы, использующие совершенно другое (в данный момент не существующее) оборудование, в принципе могли бы обмерять небеса тяжелыми модами намотанных струн. Они получили бы ответ, обратный этому огромному расстоянию. Именно в таком смысле можно считать, что Вселенная либо громадна (как мы обычно и считаем), либо крайне мала. Согласно информации, которую дают легкие моды струны, Вселенная громадна и расширяется, а согласно информации тяжелых мод — крайне мала и сжимается. В этом нет противоречия: просто используются два различных, но одинаково осмысленных определения расстояния. Из-за технических ограничений для нас гораздо привычнее первое определение, но и второе определение столь же законно.
Сейчас можно ответить на вопрос о двухметровых людях в крошечной вселенной. Когда мы измеряем человеческий рост, мы пользуемся легкими модами струны. Чтобы сравнить этот рост с размером Вселенной, для измерения размера Вселенной нужно использовать ту же процедуру, что даст 15 миллиардов световых лет — значительно больше, чем два метра. Спрашивать же, как двухметровый человек поместится в «крошечную» вселенную, так же бессмысленно, как сравнивать божий дар с яичницей. Если есть два понятия расстояния — на основе легких и на основе тяжелых мод, — то нужно сравнивать результаты измерений, сделанных одним и тем же способом.
Минимальный размер
Предыдущее обсуждение было лишь разминкой; теперь мы перейдем к главному. Если все время измерять расстояния «простым способом», т. е. использовать самые легкие моды струны вместо самых тяжелых, полученные результаты всегда будут больше планковской длины. Чтобы это понять, посмотрим, что будет происходить при гипотетическом Большом сжатии всех трех пространственных измерений в предположении, что они являются циклическими. Для определенности примем, что в начале мысленного эксперимента легкими являются моды ненамотанных струн и измерения с их помощью показывают, что радиус Вселенной огромен, а Вселенная сжимается. По мере сжатия эти моды будут становиться тяжелее, а топологические моды легче. Когда радиус уменьшится до планковской длины, т. е. R станет равным 1, массы топологических и колебательных мод станут сравнимы. Два подхода к измерению расстояния окажутся одинаково сложными для осуществления, и, кроме того, оба они приведут к одинаковому результату, так как единица обратна самой себе.
По мере того как радиус будет продолжать уменьшаться, топологические моды станут легче, и, поскольку мы всегда выбираем «простой способ», именно они будут теперь использоваться для измерения расстояний. Так как этот метод измерения дает значения, обратные значениям в случае колебательных мод, радиус будет больше планковской длины, и этот радиус будет возрастать. Это простое следствие того, что при стягивании R (измеряемого с помощью ненамотанных струн) до 1 и дальнейшем сжатии, величина 1/R (измеряемая с помощью намотанных струн) будет увеличиваться до 1 и продолжать расти. Следовательно, если всегда следить за тем, чтобы для измерений использовались легкие моды струны, т. е. чтобы всегда использовался «простой способ» измерения расстояний, то минимальным зарегистрированным значением будет планковская длина.
В частности, здесь удается избежать Большого сжатия до нулевого размера: радиус Вселенной, измеряемый с помощью легких мод струн-зондов, всегда больше планковской длины. Вместо того чтобы переходить через значение планковской длины в сторону меньших размеров, радиус, измеряемый с помощью самых легких мод, уменьшается до планковской длины и тут же начинает расти. Сжатие заменяется расширением.
Использование легких мод струны согласуется с традиционным понятием длины, которое существовало задолго до открытия теории струн. Именно это понятие расстояния ответственно, как обсуждалось в главе 5, за возникновение неразрешимых проблем с бурными квантовыми флуктуациями в случае, если масштабы, меньшие планковских, считаются физически значимыми. Здесь еще с одной точки зрения видно, что с помощью теории струн можно избежать ультрамикроскопических расстояний. В физической формулировке общей теории относительности и в соответствующей математической формулировке римановой геометрии есть только одно понятие расстояния, и оно может быть сколь угодно малым. В физической формулировке теории струн и в разрабатываемой для нее области математики — квантовой геометрии — есть два понятия расстояния. Их осмысленное использование дает понятие расстояния, которое согласуется как с нашей интуицией, так и с общей теорией относительности, если масштабы достаточно велики, но радикально отличается от последних, если эти масштабы становятся малыми. Одно из отличий состоит в том, что расстояния, меньшие планковской длины, недосягаемы.
Приведенные утверждения достаточно сложны, поэтому еще раз подчеркнем один из главных моментов. Если мы принципиально будем игнорировать различие между «простым» и «трудным» подходами к измерению длины и будем, например, продолжать использовать моды ненамотанной струны при стягивании R за планковскую длину, то, казалось бы, мы действительно сможем измерить расстояния, меньшие планковской длины. Однако, как говорилось выше, слово «расстояния» в предыдущем предложении должно быть аккуратно определено, так как у этого слова два различных значения, и только одно из них соответствует нашему традиционному пониманию. А в данном случае, когда R становится меньше планковской длины, но мы продолжаем использовать ненамотанные струны (несмотря на то, что они теперь тяжелее намотанных), мы используем «трудный» подход к измерению расстояний, и смысл понятия «расстояние» не соответствует общеупотребительному значению этого слова. Эти рассуждения, однако, далеко выходят за рамки семантики или даже за рамки обсуждения удобства или практичности измерения. Даже если мы выберем нестандартное понятие расстояния, считая радиус меньшим, чем планковская длина, законы физики, как обсуждалось в предыдущих пунктах, будут идентичны законам физики во Вселенной, где этот радиус (в обычном понимании расстояния) будет больше планковской длины (об этом, например, свидетельствует точное соответствие табл. 10.1 и 10.2). А для нас важна именно физика, а не терминология.
На основе этих идей Бранденбергер, Вафа и другие физики предложили переписать законы космологии таким образом, чтобы в моделях Большого взрыва или возможного Большого сжатия фигурировала не Вселенная нулевого размера, а Вселенная, все размеры которой равны планковской длине. Безусловно, это весьма интересное предложение для устранения математических, физических и логических нестыковок в описании Вселенной, рождающейся из точки с бесконечной плотностью и схлопываюшейся в эту точку. Конечно, сложно вообразить себе Вселенную, сжатую до крошечной песчинки планковского размера, но вообразить себе Вселенную, сжатую до нулевого размера — вот это уж действительно слишком. Весьма вероятно, что более удобоваримую альтернативу стандартной модели Большого взрыва даст находящаяся сейчас в зачаточном состоянии струнная космология, которую мы обсудим в главе 14.
Насколько общий этот вывод?
Что произойдет, если пространственные измерения не являются циклическими? Будут ли и в этом случае справедливы замечательные утверждения теории струн о минимальных пространственных размерах? Никто не знает точного ответа. Важнейшее свойство циклических измерений состоит в том, что на них можно наматывать струны. Коль скоро на пространственные измерения можно наматывать струны, большинство выводов будут оставаться справедливыми вне зависимости от точного вида этих измерений. Но что будет, если, скажем, два измерения имеют вид сферы? Тогда нельзя заставить струны сохранять намотанную конфигурацию: они всегда могут «соскользнуть» подобно тому, как резинка может соскользнуть с мяча, на который она натянута. Накладывает ли теория струн ограничение на минимальный размер и в этом случае?
Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли все пространственное измерение (как в примерах этой главы), или (с чем мы столкнемся в главах 11 и 13) коллапсирует отдельный «кусок» пространства. Как считает большинство теоретиков, независимо от вида пространства существует минимальный предел сжатия всего пространственного измерения, и механизм возникновения этого предела во многом схож с механизмом в случае циклических измерений. Обоснование существования предела является важной задачей дальнейших исследований ввиду ее непосредственного влияния на многие аспекты теории струн, включая следствия для космологии.
Зеркальная симметрия
Создав общую теорию относительности, Эйнштейн связал физику тяготения с геометрией пространства-времени. На первый взгляд, теория струн укрепляет и расширяет связь между физикой и геометрией: свойства колеблющихся струн (например, массы и переносимые ими заряды) в значительной степени определяются свойствами свернутой компоненты пространства. Однако, как мы только что видели, квантовая геометрия, связывающая геометрические и физические стороны теории струн, обладает рядом удивительных свойств. В общей теории относительности, как и в «традиционной» геометрии, окружность радиуса R отличается от окружности радиуса \/R, что кажется незыблемым и очевидным, а в теории струн эти окружности физически неразличимы. Этот факт подталкивает нас пойти дальше и задаться вопросом, не существует ли геометрических структур пространства, отличающихся друг от друга еще сильнее (не только размером, но, возможно, и видом), но, тем не менее, физически неразличимых в теории струн?
В 1988 г. Ленc Диксон из Стэндфордского центра линейных ускорителей сделал важнейшее в этом отношении наблюдение, которое впоследствии было обобщено Вольфгангом Лерхе из ЦЕРНа, Вафой из Гарварда и Николасом Уорнером, работавшим в то время в Массачусетском технологическом институте. На основе эстетических соображений, основанных на понятии симметрии, эти физики выдвинули смелое предположение, что два различных многообразия Калаби—Яу, выбранные в качестве дополнительных измерений в теории струн, могут приводить к одинаковым физическим результатам.
Чтобы дать представление о том, как может оказаться справедливой подобная кажущаяся невероятной гипотеза, вспомним, что число отверстий в добавочных измерениях Калаби—Яу определяет число семейств, в которые группируются возбуждения струны. Эти отверстия аналогичны отверстиям тора или его обобщений с несколькими ручками (рис. 9.1). К несчастью, на двумерном рисунке, который можно воспроизвести на странице, нельзя продемонстрировать то, что отверстия в шестимерном пространстве Калаби—Яу могут иметь различные размерности. Хотя такие отверстия трудно вообразить, их можно описать на понятном математическом языке. Суть состоит в том, что число семейств частиц, возникающих при возбуждениях струны, зависит только от числа всех отверстий, а не от числа отверстий каждой конкретной размерности (вот почему мы не заботились о том, чтобы изобразить разнообразные отверстия в главе 9). Предположим теперь, что у двух пространств Калаби—Яу число отверстий разных размерностей различно, но суммарное число отверстий одинаково. Так как число отверстий различных размерностей не совпадает, два этих пространства различны. Но так как суммарное число отверстий одинаково, число семейств в каждой Вселенной одно и то же. Конечно, это говорит о совпадении лишь одного физического свойства. Эквивалентность всех физических свойств — гораздо более сильное требование, но и совпадение одного свойства уже свидетельствует в пользу того, что гипотеза Диксона—Лерхе—Вафы— Уорнера может оказаться верной.
В конце 1987 г. я поступил на стажировку на физический факультет Гарвардского университета, где мне выделили кабинет по соседству с кабинетом Вафы. Так как тема моей диссертации была посвящена физическим и математическим свойствам свернутых измерений Калаби—Яу в теории струн, Вафа держал меня в курсе своих работ в этой области. Когда в конце 1988 г. он, стоя на пороге моего кабинета, сообщил о гипотезе, к которой они пришли совместно с Лерхе и Уорнером, я был весьма заинтересован, но отнесся к ней скептически. Интерес объяснялся тем, что в случае, если гипотеза окажется верной, она может открыть новые просторы исследований в теории струн, а скепсис был следствием понимания того, что догадки и установленные свойства теории — далеко не одно и то же.
На протяжении следующих месяцев я часто думал об этой гипотезе, и, честно говоря, почти убедил себя в том, что она неверна. Но вскоре, к моему удивлению, казалось бы, совершенно не связанные исследования совместно с Роненом Плессером, который в то время был аспирантом в Гарварде, а теперь работает в Институте Вейцмана и университете Дьюка, полностью изменили мое отношение к гипотезе. Плессер и я заинтересовались методами построения путем математических преобразований новых доселе неизвестных многообразий Калаби—Яу из заданного многообразия Калаби—Яу. Особенно притягательным нам казался метод орбифолдов, предложенный в середине 1980-х гг. Диксоном, Джеффри Харви из Чикагского университета, Вафой и Виттеном. Грубо говоря, этот метод состоит в склеивании различных точек на исходном многообразии Калаби—Яу согласно математической схеме, гарантирующей, что при склеивании снова получится многообразие Калаби—Яу. Эта процедура иллюстрируется на рис. 10.4. Математические выкладки, стоящие за подобными манипуляциями, невообразимо сложны, и в этом причина того, что занимающимся струнами теоретикам удалось детально исследовать эту процедуру лишь применительно к простейшим многообразиям — многомерным обобщениям торов, изображенных на рис. 9.1. Однако мы с Плессером поняли, что ряд очень красивых утверждений Дорона Гепнера, работавшего тогда в Принстонском университете, может привести к мощной теоретической схеме, в рамках которой можно применить технику орбифолдов к сложным многообразиям Калаби—Яу, например, к изображенному на рис. 8.9.
Рис. 10.4. Метод орбифолдов есть процедура построения нового многообразия Калаби—Яу путем склеивания различных точек на исходном многообразии
После нескольких месяцев напряженной работы в этом направлении мы пришли к неожиданному выводу. Если склеивать определенные группы точек правильным образом, получающееся многообразие Калаби—Яу будет отличаться от исходного, но совершенно удивительным образом. Число отверстий нечетной размерности нового многообразия будет равно числу отверстий четной размерности исходного, и наоборот. Это, в частности, означает, что полное число отверстий, а, следовательно, и число семейств частиц в двух многообразиях будут одинаковыми, хотя из-за четно-нечетных замен вид многообразий и их фундаментальные геометрические свойства будут существенно разными5).
Воодушевленные очевидной связью с догадкой Диксона—Лерхе—Вафы—Уорнера, Плессер и я углубились в изучение центрального вопроса: будут ли эти два различных многообразия с одинаковым числом семейств частиц согласованы по остальным физическим свойствам? Через пару месяцев кропотливого математического анализа, подбадриваемые моим бывшим научным руководителем Грэмом Россом из Оксфорда и Вафой, мы с Плессером пришли к утвердительному ответу. По математическим соображениям, связанным с четно-нечетными заменами, мы назвали эти физически эквивалентные, но геометрически различные пространства Калаби—Яу зеркальными многообразиями6). Пространства зеркальных пар Калаби—Яу не являются в буквальном смысле зеркальными образами друг друга. Но при всем различии геометрических свойств, если эти пространства используются в качестве дополнительных измерений теории струн, они приводят к физически эквивалентным Вселенным.
Недели, последовавшие после того, как результат был получен, были крайне волнующими. Мы осознавали, что находимся вблизи новой области физики струн. Мы показали, что изначально установленная Эйнштейном тесная взаимосвязь между геометрией и физикой в теории струн существенно модифицируется. Радикально отличающиеся геометрические структуры, которые в общей теории относительности имели бы различные физические свойства, в теории струн приводят к эквивалентным физическим моделям. Вдруг мы сделали ошибку? Вдруг в их физических свойствах имеются тонкие отличия, которые мы не заметили? Например, когда мы сообщили о своих результатах Яу, он вежливо, но твердо сказал, что мы, должно быть, ошиблись; по его мнению, с математической точки зрения наши результаты слишком странные, чтобы оказаться справедливыми. Его мнение заставило нас взять длительный перерыв для проверок.
Одно дело ошибиться в скромном утверждении, которое мало кому интересно. Но наш результат был неожиданным шагом в новом направлении, и неминуемо вызвал бы бурные отклики. Если мы ошибемся, об этом узнают все.
В конце концов, после всех мыслимых проверок и перепроверок, убежденность в нашей правоте укрепилась, и мы решили опубликовать результат. Несколькими днями позже, когда я сидел в своем кабинете в Гарварде, зазвонил телефон. Это был Филипп Канделас из Техасского университета, который сразу же осведомился, сижу я или стою. Я сказал, что сижу. Канделас сообщил мне, что он и двое его студентов, Моника Линкер и Рольф Шиммригк, обнаружили закономерность, услышав о которой, я непременно упаду со стула. Тщательно изучив огромный набор пространств Калаби—Яу, моделированных на компьютере, они обнаружили, что почти все пространства идут парами, отличающимися заменами чисел четномерных и нечетномерных отверстий. Я ответил ему, что все еще сижу: мы с Плессером получили тот же результат. Оказалось, что работа Канделаса и наша работа дополняют друг друга; мы с Плессером пошли на один шаг дальше и показали, что все физические свойства зеркальных пар одинаковы, а Канделас со своими учениками показал, что на пары разбивается гораздо большее число многообразий Калаби—Яу. Эти две работы и привели к открытию зеркальной симметрии в теории струн7).