Часть iv. теория струн и структура пространства-времени
Глава 10. Квантовая геометрия
Примерно за десятилетие Эйнштейн в одиночку сокрушил многовековые устои теории Ньютона, представив миру совершенно новую и значительно более глубокую теорию гравитации. И эксперты, и неспециалисты были покорены завораживающим изяществом и фундаментальной новизной формулировки общей теории относительности Эйнштейна. Не следует, однако, забывать о благоприятных исторических обстоятельствах, в значительной мере способствовавших успеху исследований Эйнштейна. Главное из них состоит в том, что Эйнштейну были известны математические результаты, полученные в XIX в. Георгом Бернгардом Риманом. Эти результаты давали возможность описания искривленных пространств произвольной размерности в рамках строгого геометрического аппарата. В знаменитой инаугурационной лекции 1854 г. в Геттингенском университете Риман перешел через Рубикон мышления в рамках плоского евклидового пространства и проложил дорогу к единообразному математическому описанию геометрии всех типов искривленных пространств. Именно пионерские идеи Римана позволили математикам дать количественное описание искривленных пространств, подобных тем, которые иллюстрировались на рис. 3.4 и 3.6. Гениальность Эйнштейна состояла в осознании того, что эти математические идеи были идеально приспособлены для выражения его новых взглядов на гравитационное взаимодействие. Он смело заявил о том, что математические понятия римановой геометрии безупречно согласуются с физикой гравитации.
Но сейчас, почти век спустя после научного подвига Эйнштейна, теория струн дает нам квантово-механическое описание гравитации, требующее пересмотра общей теории относительности на длинах порядка планковской. А так как в основе общей теории относительности лежит понятие римановой геометрии, то и само это понятие должно быть модифицировано для соответствия новой физике, возникающей на малых расстояниях в теории струн. И если в общей теории относительности постулируется, что свойства искривленного пространства Вселенной описываются геометрией Римана, то в теории струн утверждается, что данный постулат справедлив лишь в случае, когда структура Вселенной рассматривается на достаточно больших масштабах. На длинах порядка планковской должна вступать в игру новая геометрия, согласующаяся с новой физикой теории струн. Эту новую геометрию называют квантовой геометрией.
В отличие от геометрии Римана, здесь нет готовых геометрических рецептов, уже описанных в книгах по математике и пригодных для того, чтобы занимающиеся струнами физики могли взять их на вооружение и использовать в этой науке. Напротив, современные физики и математики погружены в исследования в теории струн, по крупицам собирая знания, которые лягут в основу новой области физики и математики. И хотя основная часть работы еще впереди, в ходе этих исследований уже было открыто много новых диктуемых теорией струн геометрических свойств пространства-времени, которые наверняка произвели бы впечатление и на самого Эйнштейна.
Суть римановой геометрии
При прыжках на батуте его упругие волокна растягиваются под весом человеческого тела, и батут деформируется. Сильнее всего растяжение вблизи тела человека, а по мере приближения к краям батута растяжение менее заметно. Это наглядно видно, если на батут нанесено знакомое изображение (например, Мона Лиза). Если на батуте никто не стоит, изображение выглядит нормально, но если на батут встает человек, изображение искажается, в особенности непосредственно под человеком (см. рис. 10.1).
Рис. 10.1. Если на батуте с нанесенным изображением стоит человек, изображение сильнее всего искажается под весом тела человека
Этот пример иллюстрирует важнейший принцип описания искривленных поверхностей, принятый в математической формулировке Римана. На основе более ранних наблюдений Карла Фридриха Гаусса, Николая Лобачевского, Яноша Бойяи и других математиков, Риман показал, что детальный анализ расстояний между всеми точками на поверхности объекта или внутри него дает способ вычисления значения кривизны. Грубо говоря, чем больше (неоднородное) растяжение, тем сильнее отклонение от формулы для расстояний в плоском случае, и тем больше кривизна объекта. Например, батут сильнее всего растягивается под ногами человека, и поэтому расстояния между точками в этой области будут сильнее всего отличаться от расстояний в случае ненагруженного батута. Следовательно, кривизна батута здесь будет максимальной. Это интуитивно ясно из приведенного рисунка: именно в таких точках изображение на батуте искажено сильнее всего.
Эйнштейн использовал математические результаты Римана и дал им точную физическую интерпретацию. Как обсуждалось в главе 3, Эйнштейн показал, что гравитационное взаимодействие обусловлено кривизной пространства-времени. Рассмотрим эту интерпретацию более подробно. С математической точки зрения, кривизна пространства-времени, подобно кривизне батута, означает искажение расстояний между точками. С физической точки зрения, действие гравитационной силы на тело есть прямое следствие этого искажения расстояний. По мере того как размеры тел уменьшаются, физика и математика должны согласовываться все лучше и лучше, потому что абстрактное математическое понятие точки становится все ближе к физической реальности. Однако теория струн ограничивает точность, с которой геометрическая формулировка Римана может соответствовать физической природе гравитации, ибо накладывает ограничение на минимальный размер, который вы можете придать физическому телу. Как только вы спускаетесь до размера струны, дальше дороги нет. В теории струн не существует традиционного понятия точечной частицы: в противном случае с помощью теории струн было бы невозможно реализовать квантовую теорию гравитации. Это определенно свидетельствует о том, что риманова геометрия, в основе которой лежат вычисления расстояний между точками, на ультрамикроскопических масштабах модифицируется теорией струн.
Такое наблюдение несущественно для стандартных приложений общей теории относительности к изучению макросистем. Например, проводя исследования в области космологии, физики, не задумываясь, рассматривают огромные галактики в качестве точек, так как размер галактик пренебрежимо мал по сравнению с размером Вселенной. Этот грубый подход к формулировке римановой геометрии оказывается, тем не менее, исключительно точным — в области космологии успех общей теории относительности очевиден. Однако в ультрамикроскопической области в силу протяженных свойств струн риманова геометрия просто не является подходящим математическим формализмом. Как мы увидим ниже, она должна быть заменена квантовой геометрией теории струн, и эта замена приведет к возникновению поразительных и неожиданных новых эффектов.
Космологическая сцена
Согласно космологической модели Большого взрыва вся Вселенная образовалась в результате необычайного космического взрыва, произошедшего около 15 миллиардов лет назад. Как впервые обнаружено Хабблом, даже сегодня продолжают разлетаться «осколки» этого взрыва, представляющие собой миллиарды галактик. Вселенная расширяется. Нам неизвестно, продолжится ли это расширение бесконечно, или в какой-то момент расширение замедлится, затем прекратится, сменится сжатием, и, наконец, вновь приведет к космическому взрыву. Астрономы и астрофизики пытаются изучить этот вопрос экспериментально, так как ответ зависит от величины, которую, в принципе, можно измерить, а именно от средней плотности материи во Вселенной.
Если средняя плотность материи превысит так называемую критическую плотность, равную примерно 10--29 г/см3 (около 5 атомов водорода на каждый кубический метр Вселенной), то Вселенную пронзит всепроникающая гравитационная сила, которая остановит расширение и приведет к сжатию. Если средняя плотность материи меньше критической, то гравитационное притяжение будет слишком слабым, чтобы остановить расширение, и оно будет продолжаться вечно. (Основываясь на житейских наблюдениях, можно подумать, что средняя плотность Вселенной во много раз превышает критическое значение. Нужно, однако, иметь в виду, что материя, как и деньги, имеет тенденцию скапливаться в определенных местах. Использование средней плотности Земли, Солнечной системы или даже Млечного пути в качестве средней плотности Вселенной сродни использованию величины состояния Билла Гейтса для оценки среднего состояния простых смертных. Состояние большинства людей бледнеет по сравнению с состоянием Гейтса, и это приводит к значительному уменьшению среднего значения. Существование огромных и практически пустых пространств между галактиками ведет к колоссальному снижению средней плотности материи.)
Тщательно исследуя распределение галактик в пространстве, астрономы могут довольно точно предсказать среднюю плотность видимой материи во Вселенной. Она оказывается гораздо меньше критической. Однако имеются серьезные основания полагать (как с теоретической, так и экспериментальной точки зрения), что Вселенная пронизана темной материей. Эта материя не участвует в ядерном синтезе, происходящем в звездах, и поэтому не излучает свет. Следовательно, ее нельзя обнаружить с помощью телескопа. Никому еще не удавалось выяснить природу темной материи, не говоря уже о том, чтобы вычислить ее точное количество. А это означает, что будущее нашей Вселенной, которая в настоящий момент расширяется, остается неясным.
Рассмотрим, например, что произойдет, если плотность материи превышает критическое значение, и однажды в далеком будущем расширение прекратится, после чего Вселенная начнет сжиматься. Все галактики сначала будут медленно приближаться друг к другу, затем, со временем, скорость их сближения возрастет, и они помчатся навстречу друг другу с огромной скоростью. Представьте себе всю Вселенную, сжимающуюся в один непрерывно уменьшающийся сгусток космической материи. Согласно главе 3, начиная с максимального размера во многие миллиарды световых лет, Вселенная сожмется до миллионов световых лет, и это сжатие будет ускоряться с каждой секундой. Все будет сжиматься сначала до размеров одной галактики, затем до размеров одной звезды, планеты, апельсина, горошины, песчинки. Далее, согласно обшей теории относительности, до размеров молекулы, атома, и, на неизбежной окончательной стадии Большого сжатия, до размеров точки. Согласно общепринятой теории Вселенная начала свое существование после взрыва в начальном состоянии нулевого размера, и если ее масса окажется достаточной, завершит свое существование коллапсом в аналогичное состояние окончательного космического сжатия.
Однако мы хорошо знаем, что если характерные длины приближаются к планковской или становятся меньше нее, уравнения общей теории относительности теряют свою силу ввиду квантово-механических эффектов. На таких масштабах длин нужно использовать теорию струн. В результате встает вопрос о том, к каким изменениям геометрической картины на основе общей теории относительности, в которой допустим сколь угодно малый размер Вселенной (так же, как в римановой геометрии допустим сколь угодно малый размер абстрактного многообразия), приведет использование теории струн. Вскоре мы увидим, что и здесь в теории струн имеются указания на ограничение физически достижимых масштабов длин, а новым замечательным следствием является невозможность сжатия Вселенной по любому пространственному измерению до размеров, меньших планковской длины.
Знакомство с теорией струн может вызвать у вас искушение высказать догадку, почему это так. Вы можете рассуждать, что независимо от того, сколько точек (имеются в виду точечные частицы) вы нагромождаете друг на друга, их суммарный объем остается равным нулю. Наоборот, если частицы — это струны, сжимающиеся при совершенно случайной ориентации, они заполнят шарик ненулевого размера, типа шарика планковских размеров, состоящего из спутанных резиновых лент. Такие соображения действительно не лишены смысла, но они не учитывают важные и тонкие свойства, изящно используемые в теории струн для обоснования минимального размера Вселенной. Эти свойства позволяют реально понять новую струнную физику и ее влияние на геометрию пространства-времени.
Чтобы пояснить эти важные стороны теории, рассмотрим сначала пример, в котором отброшены детали, несущественные для понимания новой физики. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяженными измерениями снова рассмотрим вселенную Садового шланга. Эта вселенная, имеющая два пространственных измерения, была введена в главе 8 до обсуждения теории струн с целью разъяснения идей Калуцы и Клейна 1920-х гг. Давайте использовать ее в качестве «космологической сцены» для исследования теории струн в простой постановке. Достигнутое понимание свойств этой теории будет использовано ниже для того, чтобы лучше разобраться со всеми пространственными измерениями в теории струн. С этой целью вообразим, что сначала циклическое измерение вселенной Садового шланга имеет нормальный размер, но затем начинает сжиматься все сильнее и сильнее, приближаясь по форме к Линляндии и приводя к Большому сжатию в упрощенном и частичном варианте.
Интересующий нас вопрос состоит в том, будут ли геометрические и физические характеристики этого космического коллапса иметь свойства, позволяющие явно отличить Вселенную, основанную на струнах, от Вселенной, основанной на точечных частицах.
Существенно новая черта
Не нужно много времени, чтобы обнаружить существенно новую характеристику физики струн. В нашей двумерной вселенной точечная частица может двигаться так, как показано на рис. 10.2: вдоль протяженного измерения Садового шланга, вдоль циклического измерения, или по обоим измерениям сразу. Замкнутая струна может совершать аналогичные движения, с той разницей, что при движении по поверхности струна колеблется (рис. 10.3 а). Это различие уже обсуждалось выше. Вследствие колебаний струна приобретает определенные характеристики, например массу и заряд. Это один из ключевых фактов теории струн, но он не является предметом настоящего обсуждения, так как его физические следствия уже рассмотрены выше.
Рис. 10.2. Точечные частицы, движущиеся по цилиндру
Рис. 10.3. Струны на цилиндре могут двигаться в двух конфигурациях — «ненамотанной» или «намотанной»
Сейчас нас интересует другое отличие между движением частиц и струн, непосредственно связанное с формой пространства, где движется струна. Так как струна является протяженным объектом, она может существовать еще в одной конфигурации, отличной от упомянутых выше. Струна может наматываться (как лассо) на циклическое измерение вселенной Садового шланга (рис. 10.3б)1). Струна будет продолжать скользить и колебаться, но находясь в этой расширенной конфигурации. На самом деле, струна может намотаться на циклическое измерение любое число раз (как показано на том же рисунке) и одновременно осуществлять колебательные движения в ходе своего скольжения. Если струна имеет подобную намотанную конфигурацию, мы говорим, что она находится в топологической моде движения. Ясно, что топологическая мода может существовать только у струн. У точечных частиц не существует аналога этой моды. Попытаемся понять влияние этого качественно нового типа движения струны как на свойства самой струны, так и на геометрические свойства измерения, вокруг которого она намотана.