Электробезопасность. Действие электрического тока на организм. Безопасное напряжение переменного и постоянного тока
Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного действия электрического тока, электрической дуги, электромагнитного поля и статического электричества.
При прохождении через организм человека электрический ток оказывает термическое, электролитическое и биологическое действие (ожоги тела, разложение крови и жидкостей, возбуждение тканей и сокращение мышц). Электротравмы разделяют на местные (локальные нарушения) и электрические удары (нарушение физиологических процессов). Тяжесть поражения электрическим током зависит от силы тока, продолжительности воздействия, частоты, пути прохождения тока, индивидуальных особенностей организма, состояния помещения и площади контакта человека с токоведущими частями.
Проходящий ток зависит от величины напряжения и от сопротивления тела человека. Сопротивление тела человека определяется в основном, сопротивлением рогового слоя эпидермиса кожи человека и составляет величину для сухой кожи от 3 кОм доя 100 кОм и более. При увлажнении кожи сопротивление снижается до величины 1 кОм и менее (до сопротивления внутренних тканей 300-500 Ом). При повышении напряжения сопротивление кожного покрова значительно снижается, при 40-50 В начинается пробой кожного покрова. Поэтому в качестве безопасного напряжения принято напряжение переменного тока в 42 В (для особо опасных помещений - 12 В) и постоянного тока - в 110 В.
Человек начинает ощущать ток при его величине 0,6-1,5 мА (для частоты 50 Гц). При 10-15 мА вызывается судорожное сокращение мышц, и че ловек не может самостоятельно оторваться от токоведущих частей. При 25-50 мА (50 Гц) вызываются судороги мышц, затруднение дыхания. А при токе более 50 мА и до 100 мА нарушается работа сердца с одновременным параличом дыхания. Ток в 100 мА (50 Гц) и выше считается смертельным. Чем больше длительность прохождения тока, тем больше вероятность тяжелого исхода. При длительности более 0,8 сек может наступить фибриляция и остановка сердца. Опасность поражения переменным током выше, чем постоянным и максимальна на частоте 20 - 100 Гц. Наиболее опасные пути тока - вдоль оси тела (правая рука - ноги) или через жизненно важные органы (сердце, легкие, мозг). Здоровые и физически крепкие люди легче переносят электрические удары, чем больные и ослабленные.
Классификация помещений по электробезопасности. Причины электротравматизма. Защита от поражения электрическим током.
По степени опасности поражения людей электрическим током производственные помещения разделяют на три категории:
1. С повышенной опасностью - с наличием в них одного из условий повышенной опасности (сырости, проводящей пыли, токопроводящих полов высокой температуры, возможности одновременного присоединения человека к корпусам электрооборудования и земляным шинам). Это – учебные мастерские.
2. Особо опасные помещения - наличие одного из условий: особой сырости - влажность до 100%; химически активной среды; одновременно двух и более условий повышенной опасности. Это котельные, бани, прачечные.
3. Без повышенной опасности - отсутствие условий повышенной и особой опасности. Это классы, кабинеты черчения и т.д.
Для переносных светильников и электроинструмента допустимое напряжение в соответствии с категориями помещений выбирается в пределах 24В, 12 В и 42 В.
Основными причинами электротравматизма являются:
- прикосновение к токоведущим частям электроборудования, находящимся под напряжением, к конструкционным металлическим частям оборудования случайно оказавшимися под напряжением;
- возникновение шагового напряжения на поверхности земли при замыкании силового провода на землю. Шаговое напряжение зависит от расстояния между точками соприкосновения человека с землей (величины шага), и на расстоянии 20 м от упавшего провода равно нулю.
Защита от поражения электрическим током достигается:
1. изоляцией, ограждением и укрытием токоведущих частей;
2. применением защитного заземления (зануления) корпусов электрооборудования;
3. применением средств защитного отключения напряжения при нарушении рабочего режима;
4. использование индивидуальных изолирующих средств защиты.
Защитная изоляция токоведущих частей, ограждения.
Защитное заземление, зануление. Нормирование, измерение, периодичность контроля.
Хорошая изоляция токоведущих частей является надежной защитой от поражения электрическим током. Согласно нормам сопротивление изоляции' ручных электрических машин должно быть не менее 2,5 МОм, силовой и осветительной электропроводки - выше 0,5 МОм. Проверка изоляции электроинструмента должна проводиться мегометром не реже 1 раза в квартал, электропроводки - не реже 1 раза в 3 года.
Ограждения токоведущих частей применяются как сплошные, так и сетчатые в виде кожухов или кабин.
Защитное заземление - преднамеренное электрическое соединение с землей металлических нетоковедущих частей, которые могут оказаться под напряжением. Заземление электроустановок необходимо во всех случаях nри напряжениях 500 В и выше и при напряжении выше 42 В переменного тока и 110 В постоянного тока в помещениях с повышенной опасностью, особо опасных и в наружных электроустановках.
Зануление - соединение нетоковедущих частей с нулевым проводом электрических сетей.
Заземляющее устройство – совокупность заземлителя и заземляющих
проводников. Заземления бывают выносные (заземлитель вынесен за пределы оборудования) и контурные (заземлители располагают по контуру вокруг заземляемого оборудования).
В качестве заземлителей применяют стальные стержни, уголки от 40х40 до 60х60 мм, трубы, сечением не менее 100 мм-. Заземлители берут длиной 2,5 - 3 м и забивают в землю при заглублении верхнего конца стержня на 70 - 80 см от поверхности земли. Для заземляющих проводов применяют полосовую или круглую сталь. Подключение приборов к клеммам заземления осуществляют изолированными проводами двухцветной зелено-желтой окраски сечение (для меди - 1,5 мм-, для алюминия - 2,5 мм). При использовании голых проводников их сечение должно быть соответственно 4 и 6 мм. Нормируемое значение суммарного сопротивления заземляющего устройства определяется мощностью оборудования. Для лабораторных установок до 1000 В это сопротивление не должно превышать 4 Ом (в учебных мастерских института - 1,5 Ом). Проверка сопротивления заземления осуществляется с помощью специальных приборов не реже 1 раза в год.
Использование пониженного напряжения.
Индивидуальные электрозащитные средства, инструменты и предохранительные приспособления.
Все учебные электрофицированные пособия и электротехнические изделия, а также ручной инструмент, предназначенные для работы учащихся, должны иметь двойную или усиленную изоляцию и работать при напряжении не выше 42 В. Штепсельные розетки для напряжения 12 В и 42 В должны отличаться от розеток напряжением 127 - 220 В. Для источников пониженного напряжения применяют специальные понижающие трансформаторы с раздельными обмотками.
Защитными средствами называются переносные приборы и приспособления, служащие для защиты персонала от поражения электрическим током, электрической дуги, продуктов горения и т.п. К ним относятся резиновые диэлектрические перчатки, боты, галоши, коврики, изолирующие подставки, инструмент с изолированными рукоятками, защитные очки, предохранительные плакаты. Все защитные средства для проверки их состояния периодически осматривают и испытывают (перчатки через 6 месяцев, галоши - 12 месяцев, боты - 36 месяцев). Плакаты бывают предохранительные, запрещающие и напоминающие.
Статическое электричество
Статическое электричество - это явление электризации тел или по ГОСТ 12.1.018-79 этот термин означает совокупность явлений, связанных с возникновением, сохранением и релаксацией электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ, материалов или на изолированных проводниках.
Согласно гипотезе о статической электризации тел при соприкосновении двух разнородных веществ из-за неуравновешенности атомных и молекулярных сил на их поверхности происходит перераспределение электронов с образованием двойного электрического слоя с противоположными знаками электрических зарядов т.о., между соприкасающимися телами, особенно при взаимном их трении, возникает контактная разность потенциалов, значение которой зависит от ряда факторов- диэлектрических свойств материалов, значения их взаимного давления при соприкосновении, влажности и температуры поверхностей этих тел, климатических условий.
При последующем разделении этих тел каждое из них сохраняет электрический заряд, а с увеличением расстояния между ними за счет совершаемой работы на разделение зарядов разность потенциалов возрастает и может достигнуть значений десятков и сотен киловольт. При статической электризации во время технологических процессов, сопровождающихся трением, переливанием диэлектрических жидкостей (нефтепродукты) на изолированных от земли металлических частях оборудования возникает относительно земли напряжение порядка десятков киловольт.
Аналогично происходит электризация при сматывании тканей, бумаги, полиэтилена.
При относительной влажности воздуха 85% и более зарядов статического электричества не возникает.
Эл. заряды, образующиеся на частях производственного оборудования и изделиях, могут взаимно нейтрализоваться вследствие некоторой электропроводности влажного воздуха, а так же стекать в землю по поверхности оборудования. Но в отдельных случаях, когда заряды велики и разность потенциалов также велика, то может произойти быстрый искровой разряд между наэлектризованными частями оборудования или на землю.
Устранение образования значительных зарядов статического электричества достигается при помощи следующих мер:
1. заземление металлических частей оборудования;
2. увеличение поверхностной и объемной электрической проводимости диэлектриков;
3. Предотвращение накопления значительных электрических зарядов путем установки в зоне электризации специальных нейтрализаторов. Нейтрализация электрических зарядов может осуществляться путем ионизации воздуха, разделяющего заряженный тела. Применяют ионизаторы индукционные, высоковольтные или радиоизотопные. Отвод статического электричества с тела человека осуществляется путем устройства электропроводящих полов в производственных помещениях, а также обеспечения работающих токопроводящей обувью и антистатическими халатами.