Анатомия слухового анализатора
Орган слуха человека (рис. 7) улавливает (наружное ухо), усиливает (среднее ухо) и воспринимает (внутреннее ухо) звуковые колебания, представляя собой, по сути, дистантный анализатор, периферический (сенсорный) отдел которого располагается в пирамиде височной кости (улитке).
Наружное ухо включает ушную раковину и наружный слуховой проход, который заканчивается плотной фиброзной мембраной – барабанной перепонкой, являющейся границей между наружным и средним ухом. Ушная раковина служит коллектором звуковых волн и определителем направления источника звука при слушании двумя ушами (бинауральный слух). Оба уха выполняют одну работу, но не сообщаются, что способствует более полному получению информации. Слуховой проход является не только проводником звуков, но и резонатором в диапазоне речевых частот от 2 000 до 2 500 Гц. Звук усиливается на эти частоты от 5 до 10 дБ. Продольные колебания воздуха, несущие звук, вызывают механические колебания барабанной перепонки, но для того, чтобы быть переданными мембране окна улитки, отделяющей среднее ухо от внутреннего, и далее – эндолимфе внутреннего уха, эти колебания должны быть существенно усилены.
Рис. 7. Строение уха
Наружное ухо: 1 – ушная раковина; 2 – слуховой проход; 3 – барабанная перепонка.
Среднее ухо: 4 – полость среднего уха; 5 – слуховая труба; косточки среднего уха: молоточек (а), наковальня (б), стремечко (в);
Внутреннее ухо: 6 – улитка; 7 – слуховой нерв.
Вестибулярный аппарат: 8 – преддверие с мешочками; 9 – полукружные каналы.
Среднее ухо – усилитель звуковых колебаний, уловленных ухом. Звукопроводящий аппарат человека – весьма совершенная механическая система. Она способна отвечать на минимальные колебания воздуха и проводить их к звуковоспринимающей системе, где осуществляется первичный анализ звуковой волны. Колебания барабанной перепонки, преобразующей воздушные звуковые волны в механические колебания, передаются на находящиеся в полости среднего уха, сочленяющиеся между собой слуховые косточки – молоточек, наковальню и стремечко (рис. 7). Эта система слуховых косточек обеспечивает, по новейшим данным, усиление приходящего с барабанной перепонки звука в 20–25 раз, что позволяет преодолеть сопротивление мембраны овального окна, отделяющего полость среднего уха от полости внутреннего и передать колебания эндолимфе внутреннего уха. Роль барабанной перепонки и слуховых косточек сводится к трансформации воздушных колебаний большой амплитуды и относительно малой силы в колебания ушной эндолимфы с относительно малой амплитудой, но большим давлением. При звуках большой интенсивности система сочленения слуховых косточек приобретает защитное, амортизирующее значение. Основной путь доставки звуков к улитке – воздушный, второй путь – костный. В этом случае звуковая волна непосредственно действует на кости черепа.
Одно из важных условий нормальной воздушной передачи звуков – отсутствие разности в давлении по обе стороны барабанной перепонки, что обеспечивается вентиляционной способностью слуховой («евстахиевой») трубы. Последняя имеет длину 3,5 см и ширину всего 2 мм, и соединяет в виде канала барабанную полость с носоглоткой. При глотании этот проход открывается, вентилируя среднее ухо и происходит уравнивание давления в нём с атмосферным.
Наиболее сложное строение имеет внутреннее ухо. Расположенное в каменистой части височной кости, оно представляет собой костный лабиринт, внутри которого находится перепончатый лабиринт из соединительной ткани. Перепончатый лабиринт как бы вставлен в костный лабиринт и, в общем, повторяет его форму. Между костным и перепончатым лабиринтами находится перилимфа, внутри перепончатого – эндолимфа. Во внутреннем ухе различают три отдела: улитку, преддверие улитки и полукружные каналы, но сенсорным аппаратом слуха является лишь улитка. Два другие образования относятся к системе вестибулярного анализатора.
Орган слуха находится в улитке, которая представляет собой спиральный костный канал, который спирально завивается вокруг костного стержня конусообразной формы на 2,5–2,75 завитка, и слепо заканчивается в области верхушки пирамиды. Рис. 8. Спиральный орган в улитке
А – вскрытая улитка: 1 – положение спирального органа в улитке; 2 – основная мембрана; 3 – слуховой нерв.
Б – спиральный орган: 1 - покровная мембрана; 2 - ретевидная мембрана; 3 – наружные и внутренние волосковые клетки; 4 - опорные клетки; 5 – волокна кохлеарного нерва (в поперечном разрезе); 6 - наружные и внутренние столбы; 7 – кохлеарный нерв.
Спиральный канал улитки имеет длину 28–30 мм. По диаметру в начальном отделе спиральный канал широкий (6 мм), а по мере приближения к верхушке улитки постепенно суживается, достигая 2 мм. От стержня, вокруг которого проходит этот канал, в просвет последнего, отходит костная спиральная базилярная (основная) пластинка, и, направляясь в сторону периферической стенки спирального канала, заканчивается, не доходя до нее, на середине поперечника канала. От свободного края костной спиральной пластинки к противоположной стенке улитки на всем протяжении натянута базилярная пластинка, которая является частью перепончатой улитки. Таким образом, спиральный канал улитки продольными перегородками оказывается разделённым на верхнюю (лестница преддверия), среднюю (спиральный орган) и нижнюю (барабанная лестница) части, заполненные эндолимфой. Рецепторы слуха находятся в базилярной пластинке спирального органа, расположенного в средней части канала (рис. 8А).
Базилярная пластинка состоит из примерно 20 тысяч тонких эластичных волокон, натянутых в виде струн различной длины между костным спиральным гребнем и наружной стенкой улитки (наподобие музыкального инструмента – арфы). У начального завитка улитки волокна короче и тоньше, а у последнего – длиннее и толще. Натяжение волокон постепенно ослабевает от основания к верхушке улитки. Связь между волокнами весьма слабая, и поэтому возможно изолированное колебание отдельных участков мембраны. В колебание вовлекаются только те волоски, которым сродни частоты поступившего сигнала (по типу явления резонанса). Чем меньше колеблющихся волосков, и чем ближе они расположены к окну преддверия, тем ниже по частоте звук. Рис. 9. Слуховой анализатор
К слуховым волоскам подходят дендриты волосковых (биполярных) чувствительных клеток, входящих в состав спирального узла, расположенного тут же, в центральной части улитки. Аксоны же биполярных (волосковых) клеток спирального (улиткового) узла формируют слуховую ветвь преддверно-улитко-вого нерва (VIII пара черепно-мозговых нервов), идущего к ядрам слухового анализатора, расположенным в мосту (второй слуховой нейрон), подкорковым слуховым центрам в четверохолмии (третий слуховой нейрон) и корковому центру слуха в височной доле каждого полушария (рис. 9), где формируются в слуховые ощущения. Всего в слуховом нерве примерно 30 000–40 000 афферентных волокон. Колеблющиеся волосковые клетки вызывают возбуждение лишь в строго определённых волокнах слухового нерва, а значит, и в строго определённых нервных клетках коры головного мозга. Каждое полушарие получает информацию от обоих ушей (бинауральный слух), благодаря чему становится возможным определять источник звука и его направление. Если звучащий предмет находится слева, то импульсы от левого уха приходят в мозг раньше, чем от правого. Эта небольшая разница во времени и позволяет не только определять направление, но и воспринимать звуковые источники из разных участков пространства. Такое звучание называется объемным или стереофоническим.
Физиология слуха
Для слухового анализатора адекватным раздражителем является звук. Основными характеристиками каждого звукового тона являются частота и амплитуда звуковой волны. Чем больше частота, тем звук выше по тону. Сила же звука, выражаемая его громкостью, пропорциональна амплитуде и измеряется в децибелах (дБ). Человеческое ухо способно воспринимать звук в диапазоне от 20 Гц до 20 000 Гц (дети – до 32 000 Гц). Наибольшей возбудимостью ухо обладает к звукам частотой от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно снижается.
Звук силой до 30 дБ слышен очень слабо, от 30 до 50 дБ соответствует шёпоту человека, от 50 до 65 дБ – обыкновенной речи, от 65 до 100 дБ – сильному шуму, 120 дБ – «болевой порог», а 140 дБ – вызывает повреждения среднего (разрыв барабанной перепонки) и внутреннего (разрушение кортиева органа) уха.
Порог слышимости речи у детей 6-9 лет – 17-24 дБА, у взрослых – 7-10 дБА. При утрате способности воспринимать звуки от 30 до 70 дБ наблюдаются затруднения при разговоре, ниже 30 дБ – констатируют почти полную глухоту.
Различные возможности слуха оцениваются дифференциальными порогами (ДП), т. е. улавливанием минимально изменяемых какого-либо из параметров звука, например, его интенсивности или частоты. У человека дифференциальный порог по интенсивности равен 0,3-0,7 дБ, по частоте 2-8 Гц.
Кость хорошо проводит звук. При некоторых формах глухоты, когда слуховой нерв не поврежден, звук проходит через кости. Глухие иногда могут танцевать, слушая музыку через пол, воспринимая её ритм ногами. Бетховен слушал игру на рояле через трость, которой он опирался на рояль, а другой конец держал в зубах. При костно-тканевом проведении, можно слышать ультразвуки – звуки с частотой свыше 50 000 Гц.
При длительном действии на ухо сильных звуков (2-3 минуты) острота слуха понижается, а в тишине – восстанавливается; для этого достаточно 10-15 секунд (слуховая адаптация).
Временное снижение слуховой чувствительности с более длительным периодом восстановления нормальной остроты слуха, также возникающее при длительном воздействии интенсивных звуков, но восстанавливающееся после кратковременного отдыха, носит название слухового утомления. Слуховое утомление, в основе которого лежит временное охранительное торможение в коре головного мозга, – это физиологическое явление, носящее защитный характер против патологического истощения нервных центров. Не восстанавливающееся после кратковременного отдыха слуховое утомление, в основе которого лежит стойкое запредельного торможение в структурах головного мозга, носит название слухового переутомления, требующего для его снятия проведения целого ряда специальных лечебно-оздоровительных мероприятий.
Физиология звукового восприятия. Под влиянием звуковых волн в мембранах и жидкости улитки происходят сложные перемещения. Изучение их затруднено как малой величиной колебаний, так и слишком малым размером улитки и глубиной ее расположения в плотной капсуле лабиринта. Еще труднее выявить характер физиологических процессов, происходящих при трансформации механической энергии в нервное возбуждение в рецепторе, а также в нервных проводниках и центрах. В связи с этим существует лишь ряд гипотез (предположений), объясняющих процессы звуковосприятия.
Самая ранняя из них – теория Гельмгольца (1863 г.). По этой теории, в улитке возникают явления механического резонанса, в результате которого сложные звуки разлагаются на простые. Тон любой частоты имеет свой ограниченный участок на основной мембране и раздражает строго определенные нервные волокна: низкие звуки вызывают колебание у верхушки улитки, а высокие – у её основания.
Согласно новейшей гидродинамической теории Бекеши и Флетчера, которая в настоящее время считается основной, действующим началом слухового восприятия является не частота, а амплитуда звука. Амплитудному максимуму каждой частоты в диапазоне слышимости соответствует специфический участок базилярной мембраны. Под влиянием звуковых амплитуд в лимфе обеих лестниц улитки происходят сложные динамические процессы и деформации мембран, при этом место максимальной деформации соответствует пространственному расположению звуков на основной мембране, где наблюдались вихревые движения лимфы. Сенсорные клетки сильнее всего возбуждаются там, где амплитуда колебаний максимальна, поэтому разные частоты действуют на различные клетки. В любом случае, приводимые в колебание волосковые клетки, касаются кроющей мембраны и изменяют свою форму, что приводит к возникновению в них потенциала возбуждения. Возникающее в определенных группах рецепторных клеток возбуждение, в виде нервных импульсов распространяется по волокнам слухового нерва в ядра ствола мозга, подкорковые центры, расположенные в среднем мозге, где информация, содержащаяся в звуковом стимуле, многократно перекодируется по мере прохождения через различные уровни слухового тракта. В ходе этого процесса нейроны того или иного типа выделяют «свои» свойства стимула, что обеспечивает довольно специфичную активацию нейронов высших уровней. По достижении слуховой зоны коры, локализующейся в височных долях (поля 41 – первичная слуховая кора и 42 – вторичная, ассоциативная слуховая кора по Бродману), эта многократно перекодированная информация преобразуется в слуховое ощущение. При этом в результате перекреста проводящих путей, звуковой сигнал из правого и левого уха попадает одновременно в оба полушария головного мозга.
Возрастные особенности становления слуховой чувствительности. Развитие периферических и подкорковых отделов слухового анализатора в основном заканчивается к моменту рождения, и слуховой анализатор начинает функционировать уже с первых часов жизни ребёнка. Первая реакция на звук проявляется у ребёнка расширением зрачков, задержкой дыхания, некоторыми движениями. Затем ребёнок начинает прислушиваться к голосу взрослых и реагировать на него, что связано уже с достаточной степенью развития корковых отделов анализатора, хотя завершение их развития происходит на довольно поздних этапах онтогенеза. Во втором полугодии ребёнок воспринимает определённые звукосочетания и связывает их с определёнными предметами или действиями. В возрасте 7–9 месяцев малыш начинает подражать звукам речи окружающих, а к году у него появляются первые слова.
У новорожденных восприятие высоты и громкости звука снижено, но уже к 6–7 мес. звуковое восприятие достигает нормы взрослого, хотя функциональное развитие слухового анализатора, связанное с выработкой тонких дифференцировок на слуховые раздражители, продолжается до 6–7 лет. Наибольшая острота слуха свойственна подросткам и юношам (14–19 лет), затем постепенно снижается.