Обмен углеводов и его регуляция

Углеводы поступают в организм с растительной и в меньшем количестве с животной пищей. Кроме того, они синтезируются в нем из продуктов расщепления аминокислот и жиров. Углеводы — важная составная часть живого организма, хотя ко­личество их в организме значительно меньше, чем белков и жи­ров,— всего около 2% сухого вещества тела.

Углеводы служат в организме основным источником энергии. При окислении 1 г углеводов освобождается 4,1 ккал энергии. Для окисления углеводов требуется значительно меньше кислорода, чем для окисления жиров. Это особенно повышает роль углеводов при мышечной деятельности. Значение их как источника энергии под­тверждается тем, что при уменьшении концентрации глюкозы в крови резко снижается физическая работоспособность. Большое значение углеводы имеют для нормальной деятельности нервной системы.

Пища содержит главным образом сложные углеводы, которые расщепляются в кишечнике и всасываются в кровь, преимуществен­но в виде глюкозы. В небольших количествах глюкоза содержится во всех тканях. Концентрация ее в крови колеблется от 0,08 до 0,12%. Поступая в печень и мышцы, глюкоза используется там для окислительных процессов, а также превращается в гликоген и от­кладывается в виде запасов.

В организме происходит постоянный обмен глюкозой между пе­ченью, кровью, мышцами, мозгом и другими органами. Главный потребитель глюкозы — скелетные мышцы. Расщепление в них угле­водов осуществляется по типу анаэробных и аэробных реакций. Одним из продуктов расщепления углеводов является молочная кислота.

Запасы углеводов особенно интенсивно используются при физи­ческой работе. Однако полностью они никогда не исчерпываются. При уменьшении запасов гликогена в печени его дальнейшее рас­щепление прекращается, что ведет к снижению концентрации глю­козы в крови до 0,05—0,06%, а в некоторых случаях до 0,04— 0,038%. В последнем случае мышечная деятельность продолжаться не может. Таким образом, уменьшение содержания глюкозы в кро­ви— один из факторов, снижающих работоспособность организма при длительной и напряженной мышечной деятельности. При такой работе необходимо пополнять углеводные запасы в организме, что достигается увеличением углеводов в пищевом рационе, дополни­тельным введением их перед началом работы и непосредственно при ее выполнении. Насыщение организма углеводами способствует сохранению постоянной концентрации глюкозы в крови, что необ­ходимо для поддержания высокой работоспособности человека.

Влияние центральной нервной системы на углеводный обмен осуществляется главным образом посредством симпатической иннервации. Раздражение симпатических нервов усиливает образова­ние адреналина в надпочечниках. Он вызывает расщепление глико­гена в печени и скелетных мышцах и повышение в связи с этим концентрации глюкозы в крови. Гормон поджелудочной железы глюкагон также стимулирует эти процессы. Гормон поджелудочной железы инсулин является антагонистом адреналина и глюкогена. Он непосредственно влияет на углеводный обмен печеночных кле­ток, активирует синтез гликогена и тем самым способствует его депонированию. В регуляции углеводного обмена участвуют гор­моны надпочечников, щитовидной железы и гипофиза.

23.Обмен энергии. Прямая и непрямая калориметрия

Отличительным признаком живых организмов являются энерге­тические траты и постоянный обмен веществ с окружающей их внешней средой.

Его сущность состоит в том, что из внешней среды в организм поступают разнообразные, богатые потенциальной хи­мической энергией вещества; в организме они расщепляются на более простые; освобождающаяся при этом энергия обеспечивает про­текание физиологических процессов и выполнение внешней работы.

Кроме того, поступающие в организм вещества используются для восстановления изнашиваемых и построения новых клеток и тка­ней и для образования гормонов и ферментов. Некоторые органические вещества при избыточном поступлении могут депонироваться, т. е. откладываться в организме в виде запасов. Образующиеся в процессе обмена продукты распада удаляются из организма во внешнюю среду органами выделения.

Питательными веществами, снабжающими организм энергией и строительным (пластическим) материалом, являются белки, жиры и углеводы. Кроме того, для нормального протекания обмена ве­ществ в организме необходимо поступление витаминов, воды и ми­неральных солей.

Обмен веществ в организме является сложной системой связан­ных друг с другом реакций расщепления (диссимиляции) и синте­за (ассимиляции) органических веществ. При реакциях диссими­ляции происходит освобождение потенциальной химической энер­гии, которая обеспечивает деятельность всех органов и выполнение внешней работы. Реакции синтеза требуют для своего осуществле­ния притока энергии извне. Затрачиваемая при этом энергия пре­вращается в потенциальную химическую энергию сложных молекул.

Все химические реакции в организме, в том числе переварива­ние пищи, окислительно-восстановительные и другие процессы осу­ществляются при участии биологических катализаторов (ферментов).

Прямая и непрямая калориметрия. Обмен веществ и энергии является по существу единым процессом. Количество энергии, выделяемой организмом за определенный промежуток времени, выражаются в единицах теплоты – джоулях. Определить количество освобождающейся в организме энергии можно методами прямой и непрямой калориметрии.

Прямая калориметрия. Прямая калориметрия производится с помощью специальных аппаратов – калориметрических камер. Показатели полученные методом прямой калориметрии, точные. Но метод этот весьма сложен, громоздок, а главное не дает возможности измерять энергетические затраты организма при любых видах деятельности.

Проще производить расчеты расхода энергии методом непрямой калориметрии.

Непрямая калориметрия. Источником энергии в организме служат окислительные процессы, при которых потребляется кислород и образуется углекислый газ. Чем больше организм освобождает энергии, тем интенсивнее в нем идут окислительные процессы, следовательно, тем больше организм потребляет кислорода и выделяет углекислого газа. Поэтому об энергетических процессах в организме можно судить не только по количеству теплоты отдаваемой в окружающую среду, как это делают при прямой калориметрии, но и по количеству поглощенного кислорода и выделенного углекислого газа, т.е. по величине газообмена.

Наши рекомендации